Eksempelsamling
om brandsikring af byggeri

2012

2. reviderede udgave 2016
med tillæg af 1. juli
Indholdsfortegnelse

Forord ... 9

1 Generelt .. 13
 1.1 Brandteknisk dokumentation ... 13
 1.1.1 Fastlæggelse af strategi for brandsikringen af bygningen 13
 1.1.2 Indhold af den brandtekniske dokumentation 14
 1.2 Dokumentation af byggevarers og bygningsdeles
 brandmæssige egenskaber ... 17
 1.3 Drift og vedligehold. ... 18
 1.4 Klassifikation af byggevarer og bygningsdele 19
 1.5 Brandmæssige enheder og anvendelseskategorier 21
 1.6 Brug af brandtekniske installationer 23

2 Flugtvejsforhold .. 25
 2.1 Generelt .. 25
 2.2 Antal flugtveje ... 29
 2.3 Bredde af flugtveje samt døre til og i flugtvej 36
 2.4 Udformning af flugtveje samt døre til og i flugtvej 38
 2.5 Brandmæssig adskillelse af flugtveje ... 40
 2.6 Passager i brandceller ... 41
 2.7 Redningsåbninger ... 42
 2.7.1 Antal og placering af redningsåbninger 44
 2.7.2 Udformning af redningsåbninger til personredning 45
 2.8 Trapper, trapperum, elevatorskakte og luftsluser 47
 2.8.1 Udformning af sikkerhedstrappe og luftsluse 48
 2.8.2 Flugtvejstrapper i bygninger, hvor gulv i øverste etage
 er mellem 22 og 45 m over terræn .. 51
 2.8.3 Særlige forhold vedrørende brandmands-elevator i
 bygninger, hvor gulv i øverste etage er mellem
 22 og 45 m over terræn .. 52

3 Konstruktive forhold .. 57
 3.1 Klassifikation af byggevarer og bygningsdele 57
 3.1.1 Byggevarers og bygningsdeles reaktion på brand 57
 3.1.2 Byggevarers og bygningsdeles brandmodstandsevne 59
 3.1.3 Kombination af brandmodstandsevne og
 brandbeskyttelsesevne med reaktion på brand 61
 3.2 Isoleringsmaterialer i bygningsdele ... 61
 3.3 Bærende bygningsdele ... 68
 3.4 Sammenbygning af bygningsdele .. 75
4 Brandtekniske installationer .. 77
 4.1 Anlægstyper .. 78
 4.1.1 Automatiske brandalarmanlæg 78
 4.1.2 Automatiske vandsprinkleranlæg 78
 4.1.3 Røgalarmanlæg .. 79
 4.1.4 Varslingsanlæg ... 79
 4.1.5 Brandventilation og røgudluftning 80
 4.1.6 Automatiske branddørlukningsanlæg 85
 4.1.7 Flugtvejs- og panikbelysning 85
 4.1.8 Skilte og markeringer 86
 4.1.9 Slangevinder ... 86
 4.1.10 Brandmandselevator 87
 4.1.11 Brandcentral .. 87
 4.1.12 Iltreducerende anlæg 88
 4.2 Valg af brandtekniske installationer 89

5 Brand- og røgspredning ... 97
 5.1 Brand- og røgspredning i det rum, hvor branden opstår 97
 5.1.1 Indvendige overflader på væg, loft og gulv 97
 5.1.2 Nedhængte lofter 99
 5.1.3 Rør- og kabelinstallationer 99
 5.2 Brand- og røgspredning i den bygning, hvor branden opstår eller til andre bygninger 100
 5.2.1 Udvendige vægoverflader 100
 5.2.2 Tagdækninger ... 103
 5.2.3 Brandmæssig opdeling af rum og bygningsafsnit,
 brandmæssige enheder 104
 5.2.4 Brandceller ... 105
 5.2.5 Brandsektioner ... 107
 5.2.6 Brandmæssig adskillelse af trapperum, elevatorskakte
 og porte mv. samt rum til installationer 110
 5.2.7 Gennembrydninger og lignende i brandadskillende
 bygningsdele ... 112
 5.2.8 Brandsektionsvægges stabilitet under brand 112
 5.2.9 Brandkam og brandkamserstatning (brandsektion) 114
 5.3 Brandspredning til bygninger på anden grund 120
 5.3.1 Afstand til skel, vej- og stimidte 120
 5.3.2 Brandväg, brandkam og brandkamserstatning 122
 5.3.3 Vandret brandspredning/vinkelsmitte 123

6 Redningsberedskabets indsatsmulighed 125
 6.1 Adgangs- og tilkørselsforhold 125
 6.2 Røgudluftning ... 127
 6.2.1 Trapperum .. 127
6.2.2 Kældre, tagrum og øvrige rum 127
6.3 Slukningsmulighed ... 129
 6.3.1 Stigrør .. 129
 6.3.2 Markering af brandvægge og brandsektionsadskillelser 131
6.4 Evakuering fra bygninger, hvor mange personer har nedsat mobilitet ... 131

7 Enfamiliehuse, helt eller delvist sammenbyggede enfamiliehuse, sommerhuse og campinghytter samt småbygninger 133
 7.1 Generelt ... 133
 7.2 Anvendelseskategori 134
 7.3 Flugtveje og redningsforhold 134
 7.4 Redningsåbninger ... 135
 7.5 Konstruktive forhold 135
 7.6 Bærende bygningsdele 135
 7.7 Brandtekniske installationer 136
 7.8 Brand- og røgspredning 136
 7.8.1 Brand- og røgspredning i den bygning, hvor branden opstår .. 136
 7.9 Brand- og røgspredning til andre bygninger på samme grund eller anden grund 137
 Særlige forhold ved sammenbyggede enfamiliehuse 139
 7.10 Brandspredning til bygninger på anden grund 142
 7.11 Redningsberedskabets indsatsmulighed 142
 7.12 Særlige forhold ved garager, carporte, udhuse og lignende mindre bygninger i forbindelse med fritliggende enfamiliehuse, helt eller delvist sammenbyggede enfamiliehuse, sommerhuse og campinghytter ... 142
 7.13 Særlige forhold ved integrerede garager, carporte og udhuse mv. .. 145

8 Staldbyggeri ... 147
 8.1 Generelt .. 147
 8.2 Beskrivelse af staldtyper, brandbelastning, evakueringsemulighed og rømningstider 147
 8.2.1 Fjerkræ .. 148
 8.2.2 Kvæg .. 149
 8.2.2 Svin .. 152
 8.2.3 Pelsdyr .. 154
 8.2.4 Heste .. 154
 8.3 Brandsikring af dyrestalde 157
 8.3.1 Generelt .. 157
 8.3.2 Flugtvejsforhold (rømning) med særlig fokus på dyr 157
 8.3.3 Konstruktive forhold 161
 8.3.4 Brandtekniske installationer 162
Eksempelsamling om brandsikring af byggeri

8.3.5 Brand- og røgspredning .. 164
8.3.6 Redningsberedskabets indsatsmulighed 165

9 Industri- og lager-bygninger i én etage 167

9.1 Generelt ... 167
 9.1.1 Anvendelseskategori samt industri- og lagerklasser 168
9.2 Flugtvejsforhold .. 174
 9.2.1 Generelt .. 174
 9.2.2 Antal flugtveje .. 176
 9.2.3 Brandmæssig adskillelse af flugtveje 180
 9.2.4 Redningsåbninger .. 181
9.3 Konstruktive forhold ... 182
 9.3.1 Isoleringsmaterialer i bygningsdele. 182
 9.3.2 Bærende bygningsdele. 187
 9.3.3 Sammenbygning af bygningsdele 190
9.4 Brandtekniske installationer 190
 9.4.1 Valg af brandtekniske installationer 190
9.5 Sikring mod brand- og røgspredning 193
 9.5.1 Sikring mod brand- og røgspredning i det rum, hvor branden opstår .. 193
 9.5.2 Sikring mod brand- og røgspredning i den bygning, branden opstår i, og til bygninger på samme grund 195
 9.5.3 Brandspredning til bygninger på anden grund 210
 9.5.4 Sikring mod en brands opståen 213
9.6 Redningsberedskabets indsatsmuligheder 217
 9.6.1 Adgangs- og tilkørselsveje til bygningen 217
9.7 Drift og vedligehold .. 227
 9.7.1 Drifts- og vedligeholdelsesplan 227
 9.7.2 Ordensregler ... 229

Bilag 1 ... 233
Oversigt over brandtekniske klasser 233

Bilag 2 ... 235
Ordforklaringer .. 235

Bilag 3 ... 239
Oversigten over udvalgte standarder og vejledninger mv. 239

Bilag 4 ... 245
– Eksempler på skemaer for egenkontrol for bygninger 245

Stikordsregister ... 249
Bestemmelserne i bygningsreglement 2015, kapitel 5, er funktionsbase-rede brandkrav, der beskriver det sikkerhedsniveau, som i tilfælde af brand skal opnås for bygninger opført efter bygningsreglement 2015.

Denne eksempelsamling indeholder en række eksempler på, hvordan bestemmelserne i bygningsreglement 2015, kapitel 5, brandforhold f.eks. kan opfyldes. Der er også mulighed for at opfylde bestemmelserne på anden vis, blot det kan dokumenteres, at sikkerhedsniveauet i bygningsreglementet er opfyldt.

Eksempelsamlingen indeholder først en række generelle beskrivelser om brandsikring af byggeri. Herefter er der tre afsnit, som specifikt omhandler særlige forhold ved:

- Enfamiliehuse, helt eller delvist sammenbyggede enfamiliehuse, sommerhuse og campinghytter samt dertil hørende små-bygninger,
- Staldbyggeri, og
- industri- og lagerbygninger i én etage.

En industribygning er en bygning med arbejdssteder, hvor der foregår produktion og/eller bearbejdning af produkter til erhvervsmæssig brug. En lagerbygning er en bygning, der benyttes til opbevaring af produkter. En lagerbygning kan indeholde pakkeafsnit.

Eksemplerne i afsnit 7 til 9 beskriver brandsikring af disse typer bygninger.
Strategien for eksemplerne i denne eksempelsamling er baseret på, at alle personer i en bygning skal kunne redde sig helt ud af bygningen til terræn i det fri enten ved egen hjælp, ved hjælp fra eventuelt personale eller ved hjælp af redningsberedskabet, inden personerne bliver truet af branden.

Eksemplerne i denne eksempelsamling omfatter traditionelle bygninger. Eksemplerne kan derfor ikke direkte overføres på mere komplekse bygninger, som f.eks.:

- Bygninger med overdækkede gårde,
- Industri- og lagerbygninger og lagerhoteller i flere etager, automatlagre, clad-rack lagre,
- Meget høje bygninger, hvor der er mere end 45 m til gulv i øverste etage,
- Bygninger med store åbne rum mv.

Større eller mindre dele af denne type bygninger vil det ofte være nødvendigt tillige at opføre på baggrund af anden brandteknisk dokumentation. Eksempler på, hvorledes en brandteknisk dimensionering kan udføres, kan ses i Information om brandteknisk dimensionering.

Der kan som nævnt være bygningsudformninger, hvor det er hensigtsmæssigt at anvende både eksempelsamlingen og en anden form for brandteknisk dokumentation, som f.eks. en brandteknisk dimensionering. En kontorbygning i flere etager med en traditionel kontorgangsopbygning, der munder ud i et atrium, kan være et eksempel. Kontordelen kan udføres efter denne eksempelsamling og brandsikkerheden i atriet kan eftervises ved en brandteknisk dimensionering.

Når eftervisningen af sikkerhedsniveauet sker ved brug af en kombination af traditionelle løsninger og en brandteknisk dimensionering, er det meget vigtigt, at løsningerne ikke kombineres på en uhensigtsmæssig måde. Et eksempel på en uhensigtsmæssig kombination er, hvis nogle dele af et flygtevægsystem udføres på baggrund af en brandteknisk dimensionering, f.eks. gangbredderne, og andre dele, som f.eks. ganglængder, udføres efter de traditionelle løsninger.

En eftervisning af, at sikkerhedsniveauet i bygningsreglementet er opfyldt kan også ske ved at foretage en komparativ analyse. Ved en komparativ analyse eftervises ved en vurdering eller en beregning, at den kritiske bygning har en sikkerhed, der svarer til sikkerhedsniveauet, som er angivet i eksemplerne i denne eksempelsamling. Der henvises f.eks. til DS/INSTA 950:2014 Funktionsbestemte brandkrav - Komparativ me-
tode til verificering af bygningers beregnede brandsikkerhed, for nær-
mere beskrivelse af, hvordan metoden kan anvendes.

Bygninger til brandfarlig virksomhed og driften af bygninger, hvor
mange mennesker samles, er tillige omfattet af beredskabslovgivningens
bestemmelser.

I denne eksempelsamling er der for materialer, beklædninger, gulvbe-
lægninger, tagdækninger, bærende ikke-adskillende bygningsdele, bæ-
rende adskillende bygningsdele, ikke-bærende adskillende bygningsdele
og for branddøre benyttet de nye europæiske brandklasser med de hid-
tidige danske brandklasser i firkantet parentes.

Det nationale system for klassifikation af byggevarer og bygningsdele
erstattes løbende af det nye europæiske system. Der er en overgangsper-
riode, hvor både det nuværende og det nye system kan anvendes. I denne
periode vil de gældende og de nye prøvningsmetoder og klassifikationer
eksistere side om side.
1 Generelt

1.1 Brandteknisk dokumentation

Det fremgår af bygningsreglement 2015, kapitel 1.3, at kommunalbestyrelsen kan forlange en brandteknisk dokumentation til brug for vurderingen af ansøgningen om byggetilladelse. Formålet med den brandtekniske dokumentation er at redegøre for, hvordan brandsikkerhedsniveauet opfyldes og opretholdes i hele bygningens levetid.

En brandteknisk dokumentation er en beskrivelse af bygningens anvendelse, placering, aktive og passive brandsikringstiltag, redningsberedskabets indsatsmuligheder m.m. Den brandtekniske dokumentation kan udgøre en del af byggesagen, og kan være grundlaget for kommunalbestyrelsens sagsbehandling.

Omfanget af den brandtekniske dokumentation bør tilpasses projektets omfang og kompleksitet. Ved nogle projekter, såsom opførelse af skure, mindre indretningsændringer og andre simple og traditionelle byggerier, er det kun en begrænset del af punkterne i afsnit 1.1.2, der er relevante. Det er dog kommunalbestyrelsens konkrete vurdering i det enkelte byggeprojekt, der er bestemmende for, hvad der som minimum bør indgå i den brandtekniske dokumentation.

Hvis det skønnes nødvendigt i det enkelte tilfælde, kan kommunalbestyrelsen jf. bygningsreglement 2015, kapitel 1.9, forlange en brandteknisk dokumentation for bygningens udformning og grundlaget for de valgte sikkerhedstiltag, dokumentation for, hvordan kontrol og vedligeholdelse af de brandtekniske installationer og bygningsdele vil blive gennemført samt en sagkyndig erklæring vedrørende den brandtekniske dokumentation, hvor udgifterne hertil afholdes af ansøgeren.

Den sagkyndige erklæring kan udføres af brandrådgivere, som har et tilstrækkeligt indsigt til at samle og vurdere sikkerhedsniveauet i det pågældende byggeri.

1.1.1 Fastlæggelse af strategi for brandsikringen af bygningen

Inden der søges om byggetilladelse, dispensation eller ved anmeldelser, kan det være en god ide at afholde en forhåndsdialog med kommunalbestyrelsen, jf. bygningsreglement 2015, kapitel 1.9, forhåndsdialog.
Formålet med forhåndsdialogen er at fastlægge rammerne for byggeprojektet, herunder strategien for brandsikringen af bygningen.

Ved større byggerier kan man vælge at udfærdige en egentlig aftale omkring strategien for brandsikringen, som så kan indgå som en del af den brandtekniske dokumentation. Strategien kan indeholde mål, principper og ønsker til bygningens brandsikkerhedsniveau og kan desuden indeholde en entydig og klar beskrivelse af bygningens tiltænkte anvendelse og andet, der vil have betydning for udformningen af bygningens brandsikkerhed.

Følgende kan typisk indgå i overvejelserne for en brandstrategi:

1. **Bygningens udformning og anvendelse**
 - Bygningen: F.eks. udformning, planløsning, størrelse, placering og materialevalg
 - Indre og ydre miljø: F.eks. klimatiske faktorer, vind- og snepåvirkning af brandventilation samt sne på flugtveje eller ud for flugtvejsdøre
 - Aktiviteter i bygningen: Hvad skal bygningen benyttes til, særlige områder i bygningen, der afviger fra den angivne benyttelse, og som evt. hører under beredskabslovgivningen eller anden lovgivning
 - Personer i bygningen: F.eks. forventet antal personer i bygningen, placering af personerne i bygningen, karakteristika for personer (personale, gæster, handicappede etc.), indbyrdes afhængighed for at kunne vurdere deres adfærd i tilfælde af evakuering
 - Håndtering af brandsikkerheden: F.eks. interne kontrolplaner, uddannelse af personalaet, regelmæssige brandøvelser

2. **Evakueringstrategi**
 - Total evakuering og/eller
 - Evakuering til sikker lokalitet inde i bygningen

3. **Brandsikringstiltag**
 - Aktive og passive tiltag
 - Anvendelse af aktive og passive tiltag

1.1.2 Indhold af den brandtekniske dokumentation

Indholdet af den endelige brandtekniske dokumentation afhænger af projektets omfang og kompleksitet. Den brandtekniske dokumentation bør dog indeholde den overordnede strategi for brandsikringen og en beskrivelse af byggeriet samt dokumentation for de forhold, som er forudsat i strategien, herunder tegninger, beskrivelser af metoder mv., kva-
litetskontrol, drift og vedligehold, referencer samt relevante oplysninger om den rådgiver, der har udført analysen mv.

Den brandtekniske dokumentation kan f.eks. indeholde nedenstående punkter, såfremt de er relevante for den konkrete bygning.

1. **Indledning**
 - Strategi for brandsikringen, herunder gennemgang af projektet med henblik på at vurdere om forslagene i denne eksempelsamling passer med den aktuelle udformning, det vil sige:
 - Er bygningen udformet på traditionel vis
 - Anvendes traditionelle byggemetoder og materialer
 - Er bygningen stor, høj eller kompleks
 - Er der en stor personbelastning
 - Skal bygningen anvendes til brandfarlig virksomhed

2. **Bygningens anvendelse**
 - Virksomhed
 - Antal personer i bygningen
 - Personernes placering i bygningen
 - Personernes kendskab til bygningens indretning og flugtveje
 - Personernes mobilitet
 - Dagophold og/eller natophold
 - Fastlæggelse af anvendelseskategori(er), jf. bygningsreglement 2015, kapitel 5.1.1, stk. 1, anvendelseskategorier.

3. **Placering af bygningen på grunden**
 - Situationsplan, herunder bygningens placering på grunden
 - Brandmæssige adskillelser i forhold til skel og i forhold til andre bygninger på samme grund
 - Placering og udførelse af eventuel brandvæg

4. **Flugtvejsforhold**
 - Beskrivelse af flugtvejsstrategien, herunder total evakuering til terræn i det fri eller evakuering til et sikkert sted i bygningen
 - Placering af flugtveje
 - Udformning af flugtvejsgange
 - Udformning af flugtvejstrapper
 - Gangafstande
 - Dørebredder
 - Åbningsretning for døre og lignende
 - Redningsåbninger
5. **Passive brandsikringstiltag**
 - Afstand til andre bygninger på samme grund
 - Placering og udførelse af udvendige overflader og tagdækning
 - Placering og udførelse af de brandmæssige enheder, herunder brandsektioner, brandceller og andre brandadskillende bygningsdele
 - Placering og udførelse af indvendige overflader og gulvbelægninger
 - Placering og udførelse af gennemføringer, branddøre, ventilationsanlæg
 - Placering og udførelse af bærende bygningsdele og deres brandmodstandsevne
 - Anvendte byggevarers og bygningsdeles brandmæssige egenskaber
 - Skilte og markering

6. **Aktive brandsikringstiltag**
 - Automatisk brandalarmanlæg
 - Automatisk sprinkleranlæg
 - Røgalarm
 - Væskslange
 - Brandventilation
 - Brand- og røgsikring af ventilationsanlæg
 - Placering og udførelse af automatiske branddør lukningsanlæg
 - Flugtvejs- og panikbelysning
 - Vandfyldte slangevinder og andet slukningsmateriel
 - Iltreducerende anlæg

7. **Redningsberedskabets indsatsmuligheder**
 - Adgangsveje for redningsberedskabet, nøgleordning
 - Brandredningsarealer
 - Placering af brandhaner
 - Stigrør
 - Mulighed for røgudluftning
 - Brandmandselevator
 - Placering af brandcentral, betjeningspaneler, sprinklercentral og lignende

8. **Drift og vedligehold**
 - Driftsansvarlig(e) person(er) med kontaktoplysninger
 - Uddannelse af personale
 - Driftmæssige forskrifter, herunder afvigelser, undtagelser og særlige forhold
 - Anvendelse af bygning, lokaler, gange og trapper. Herunder personantal, brandbelastning mv.
 - Tegningsmateriale, brandplaner, sikringsanlæg, mv.
 - Kontrolskemaer for passive og aktive brandsikringstiltag, kontroltype og interval
Den brandtekniske dokumentation bør indgå som en del af dokumentationsgrundlaget i byggesagen og kan foruden ovenstående punkter indeholde dokumentation for de anvendte byggevarers og bygningsdeles brandmæssige egenskaber, som er yderligere beskrevet i afsnit 1.2, samt en beskrivelse af en drift og vedligeholdelsesplan for bygningen og dens installationer, se mere herom i afsnit 1.3, samt hvilke standarder, der er benyttet som grundlag for bl.a. de brandtekniske installationer, se afsnit 1.6, samt øvrige standarder, vejledninger mv. der ligger til grund for dokumentationen.

1.2 Dokumentation af byggevarers og bygningsdeles brandmæssige egenskaber

Til brug for byggesagsbehandlingen kan kommunalbestyrelsen efter byggeovens § 16, stk. 1, jf. bygningsreglement 2015, kapitel 1.3, kræve dokumentation for, at de byggevarer og bygningsdele, der anvendes i byggeriet, overholder de gældende krav.

Hvorvidt en byggevare eller en bygningsdel opfylder de ønskede brandmæssige egenskaber, kan dokumenteres på en eller flere af følgende måder:

- Beregning
- Brandprøvning efter gældende prøvningsmetoder eller andre for anvendelsen relevante metoder.
- CE-mærkning
- Kommissionsbeslutninger omhandlende byggevarer, der er klassificeret uden yderligere brandprøvning (det vil sige byggevarer med ensartede brandmæssige egenskaber, hvor der er udstedt en generel klassifikation på baggrund af brandprøvning, f.eks. træbaserede plader og gipskartonplader).
- Kommissionsbeslutninger omhandlende byggevarer, der er klassificeret uden brandprøvning som klasse A1 og A1ₙ (det vil sige byggevarer hvor de brandmæssige egenskaber er fastlagt uden prøvning, f.eks. beton, stål og keramiske produkter).
- MK-godkendelse eller tilsvarende ordning.

Nogle byggevarer skal CE-mærkes, derimod er der ikke krav om at byggevarer skal være MK-godkendte.

Det er producentens og leverandørens ansvar at sikre, at byggevarer og bygningsdele, der bringes på标记et, overholder de gældende krav. Det er bygherren og dennes rådgivere, der har ansvaret for, at der forelig-
ger den nødvendige dokumentation for de løsninger, der anvendes i det konkrete byggeri.

1.3 Drift og vedligehold

Det fremgår af bygningsreglement 2015, kapitel 5.1, stk. 2, at brandsikkerheden skal opretholdes i hele bygningens levetid. For at sikre opretholdelse af brandsikkerheden i hele bygningens levetid skal den aktive og passive brandsikring løbende vedligeholdes. Som en hjælp hertil kan der udarbejdes en drifts- og vedligeholdelsesplan, som har til formål at minimere risikoen for svigt af brandsikringen i hele bygningens levetid.

En drifts- og vedligeholdelsesplan kan blandt andet indeholde en beskrivelse af, hvordan de aktive og passive brandsikringstiltag vedligeholdes og kontrolleres, efter at bygningen er taget i brug.

En drifts- og vedligeholdelsesplan er altså tæt knyttet til de punkter, der indgår i den brandtekniske dokumentation for bygningens udførelse, f.eks. som angivet i afsnit 1.1.

Det er hensigtsmæssigt løbende at sikre, at de forudsætninger og tiltag, der er beskrevet i den brandtekniske dokumentation, fortsat er overholdt.

Alle forhold og forudsætninger, som er medtaget ved fastlæggelsen af brandstrategien, bør derfor være fastlagt i et dokument i en sådan form, at man regelmæssigt kan kontrollere, at de fortsat er opfyldt. Ændrede forudsætninger kan f.eks. være ændringer i bygningen eller i bygningens anvendelse, såsom ændret personbelastning, anvendelse af andre materialer i produktionen, ombygninger som medfører en ændring i indretningen eller i visse bygningsdele.

Terminer, kontrol og vedligeholdelse af brandtekniske installationer fremgår bl.a. af fabrikantens anvisninger samt standarder og forskrifter for udførelse, kontrol og vedligehold af brandtekniske installationer, se afsnit 1.6.

Visse typer af bygninger er endvidere underlagt lovpligtige driftmæssige eftersyn, f.eks. visse forsamlingslokaler, hoteller mv., jf. beredskabslovgivningens og Sikkerhedsstyrelsens bestemmelser.

For så vidt angår drift og vedligehold af industri- og lagerbygninger i én etage, henvises til afsnit 9.7.
1.4 Klassifikation af byggevarer og bygningsdele

Byggevarer og bygningsdele kan klassificeres for deres egenskaber med hensyn til reaktion på brand og/eller brandmodstandsevne. På europæisk plan er der udarbejdet fælles regler for prøvning og klassifikation af både byggevarer og bygningsdele. Dette medfører, at det nationale system for klassifikation af byggevarer og bygningsdele skal erstattes af det nye europæiske system.

Klassifikationer efter det hidtidige danske system vil fortsat være gyldige i en periode indtil overgangsperioden i den relevante harmoniserede standard eller den europæiske tekniske godkendelse er udløbet.

Tidspunktet for hvornår overgangsperioden påbegyndes afhænger af standardens eller godkendelsens færdiggørelse og vedtagelse i CEN eller EOTA og bliver dermed forskellig fra byggevare til byggevare.

For områder, hvor der endnu ikke findes en harmoniseret standard eller en europæisk teknisk godkendelse, kan nye klassificeringer enten foretages efter det europæiske klassifikationssystem eller efter det hidtidige danske system.

De hidtidige nationale klassifikationssystemer forventes løbende udfaset, når de nødvendige europæiske standarder foreligger.

De brandtekniske betegnelser for byggevarer og bygningsdele, som er anvendt i denne eksempelsamling, refererer derfor til følgende standarder vedrørende brandtekniske klassifikationer.

Det europæiske system:
Klassifikation af byggevarer og bygningsdele i relation til deres brandmodstandsevne og brandbeskyttelsesevne:

- DS/EN 13501-2 Brandteknisk klassifikation af byggevarer og bygningsdele. Del 2: Klassifikation ud fra resultater opnået ved prøvning for brandmodstandsevne (eksklusive ventilationssystemer)
- DS/EN 13501-3 Brandteknisk klassifikation af byggevarer og bygningsdele. Del 3: Klassifikation ud fra resultater opnået ved prøvning for brandmodstandsevne af komponenter til ventilationsanlæg: Kanaler og brandspøjæld
- DS/EN 13501-4 Brandteknisk klassifikation af byggevarer og bygningsdele. Del 4: Klassifikation ud fra resultater opnået ved prøvning for brandmodstandsevne af komponenter til røgkontrolsystemer
Eksempelsamling om brandsikring af byggeri

Klassifikation af byggevarer og bygningsdele i relation til deres reaktion på brand:

- DS/EN 13501-1 Brandteknisk klassifikation af byggevarer og bygningsdele. Del 1: Klassifikation ud fra resultater opnået ved prøvning for reaktion på brand
- DS/EN 13501-5 Brandteknisk klassifikation af byggevarer og bygningsdele. Del 5: Klassifikation ud fra resultater opnået ved prøvning for udvendig brandpåvirkning af tage.

Dette tidligere danske system:
Klassifikation af byggevarer og bygningsdele i relation til deres brandmodstandsevne:

- DS 1052.1 Brandteknisk klassifikation. Bygningsdele eksklusive døre. Modstandsevne mod brand

Klassifikation af byggevarer og bygningsdele i relation til deres reaktion på brand:

- DS 1057-1 Brandteknisk klassifikation. Byggeomaterialer. Ubrændbarhed
- DS 1063.1 Brandteknisk klassifikation. Tagdækninger. Klasse T tagdækninger
- DS 1063.2 Brandteknisk klassifikation. Gulvbelægninger. Klasse G gulvbelægninger
- DS 1065-1 Brandteknisk klassifikation. Byggeomaterialer. Klasse A og klasse B materialer
1.5 **Brandmæssige enheder og anvendelsesekategorier**

Brandmæssige enheder

Oftes vil en større bygning med forskellige anvendelser skulle opdeles, så anvendelsen inden for det enkelte område i brandmæssig henseende er sammenlignelig. Et sådan område kan benævnes et bygningsafsnit.

Et bygningsafsnit kan altså være en del af en bygning, hvor der er den samme anvendelse, eller det kan være en del af et større område i en bygning, som har et så stort areal, at det er hensigtsmæssigt at opdele det brandmæssigt for at begrænse en brands omfang.

Et bygningsafsnit vil ofte udgøre en selvstændig brandsektion. En brandsektion er en bygning eller en del af en bygning, der er udformet, så en brand ikke spredes til andre brandsektioner inden for den tid, der er nødvendig for evakuering samt for redningsberedskabets redning af personer i tilstødende brandceller.

For yderligere at sikre, at en brand i et rum ikke spreder sig hurtigt til andre rum, er det ofte hensigtsmæssigt yderligere at opdele en bygning i mindre brandmæssige enheder, som f.eks. udgør et eller flere rum. Normalt kan denne opdeling udføres som brandceller.

En brandcelle er et eller flere rum, hvorfra branden ikke spredes til andre brandceller i den tid, der kræves for evakuering og for redningsmændskabets redning af personer i tilstødende brandceller.

Anvendelsesekategorier

Bygningsreglement 2015, kap. 5.1.1 definerer 6 forskellige anvendelsesekategorier ud fra en række kriterier vedrørende risikoforhold under brand. Disse kriterier er bl.a. konsekvensen af en brand, herunder antal personer, som kan blive påvirket af en brand, og personernes mobilitet samt evne til at erkende og reagere på en brand. Når antallet af personer i et bygningsafsnit skal fastlægges, bør der ses på hvert enkelt rum uanset brandmodstandsevnen af de omgivende konstruktioner.
Bygninger kan indeholde rum, som tilhører flere forskellige anvendelseskategorier.

Figur 1.1. Eksempel på bygning opdelt i flere anvendelseskategorier.

Bygningsreglement 2015, kapitel 5.5.2, stk. 2 foreskriver, at bygningsafsnit i forskellige anvendelseskategorier skal udgøre selvstændige brandmæssige enheder. Derfor skal bygninger ofte opdeles i brandmæssige enheder, således at rum, som hører til samme kategori, vil udgøre en brandmæssig enhed adskilt som en brandcelle eller en brandsektion.

Der er dog en del tilfælde, hvor opdeling efter dette principl vil være uhensigtsmæssigt. Man vil så ofte i stedet kunne anvende et princip, hvor den brandmæssige enhed kan bestå af flere rum med to eller flere forskellige anvendelseskategorier. Hele den brandmæssige enhed skal så opfylde alle kravene for alle de pågældende anvendelseskategorier.

Eksempelvis kan kontorer (anvendelseskategori 1) placeres i samme brandsektion som ét eller flere møderum til mere end 50 personer (anvendelseskategori 3). Her vil en tilstrækkelig sikkerhed f.eks. kunne opnås, hvis hele brandsektionen indrettes efter reglerne for anvendelseskategorii 3.

Hvor områder med forskellig anvendelseskategori indrettes med fælles flugtveje, bør det sikres, at flugtvejene er udformet, så de tilgodeser forholdene for hver anvendelseskategori. Indrettes der f.eks. et auditorium til 200 personer i en skole, hvor de øvrige undervisningsrum er indrettet til højst 50 personer, er det tilstrækkeligt, hvis de fælles flugtveje samt de flugtveje, der betjener auditoriet, udformes efter retningslinierne for anvendelseskategorii 3. De øvrige flugtveje kan udføres efter retningslinierne for anvendelseskategorii 2.

1.6 Brug af brandtekniske installationer
Ifølge bygningsreglement 2015, kapitel 5.4 skal der i visse bygninger installeres forskellige former for brandtekniske installationer. Det er vigtigt, at de brandtekniske installationer, der anvendes i en bygning, giver et fredsstilsende sikkerhedsniveau i hele bygningens levetid. Dette kan opnås ved, at installationerne dimensioneres og installeres under hensyntagen til den konkrete anvendelse samt ved, at det sikres, at installationerne løbende bliver kontrolleret og vedligeholdt. De i bilag 3 anførte dokumenter (standarder mv.) kan f.eks. anvendes som grundlag for dimensionering, udførelse, kontrol og vedligeholdelse.

Oversigten over standarder og vejledninger mv. i bilag 3 er ikke fuldstændig, blandt andet fordi der til stadighed bliver færdiggjort nye europæiske standarder. Andre standarder eller retningslinier, som kan sikre et tilsvarende brandteknisk sikkerhedsniveau, kan også anvendes som grundlag for udførelse, kontrol og vedligeholdelse af brandtekniske installationer.

På europæisk plan er der udarbejdet fælles regler for prøvning og udførelse af brandtekniske installationer og for komponenter i installationer. I takt med, at de europæiske harmoniserede standarder og tekniske godkendelser træder i kraft, kan disse standarder og godkendelser anvendes. Når overgangsperioden for den enkelte europæiske standard eller godkendelse er udløbet, er det kun tilladt at anvende denne.

Standarder benevnt:
- prEN er foreløbige europæiske standarder
- DS/EN eller EN er implementerede europæiske standarder.
2 Flugtvejsforhold

2.1 Generelt
Ifølge bygningsreglement 2015, kapitel 5.2, stk. 1 skal en bygning udformes og konstrueres på en sådan måde, at evakuering kan ske via flugtveje eller direkte til det fri fra et villkårligt sted i bygningen. Evakuering skal ske til terræn i det fri eller til et sikkert sted i bygningen.

Med hensyn til:
• Enfamiliehuse, helt eller delvist sammenbyggede enfamiliehuse, sommerhuse og campinghytter samt dertil hørende småbygninger,
• staldbyggeri, og
• industri- og lagerbygninger i én etage,

henvises der til henholdsvis afsnit 7, 8 og 9.

Inden dimensionering af flugtvejene i en bygning er det vigtigt at fastlægge en evakueringsstrategi. Der er en række forhold, som har indflydelse på, hvorledes en bygning evakueres mest hensigtsmæssigt. Disse forhold omfatter bl.a.

• Anvendelsen af bygningen
• Bygningshøjden, herunder antal etager
• Antal personer, herunder personernes fordeling på etagerne/bygningen
• Personernes karakteristika, herunder deres evne til selv at evakuere bygningen,
• Udformning af flugtveje, herunder antal af flugtveje, bredde samt og deres placering i forhold til hinanden.

En evakueringsstrategi kan bestå af flere evakueringsmetoder. Traditionelt benyttes der tre grundlæggende koncepter i evakueringsstrategier.

• Totalevakuering
• Faseevakuering
• Evakuering via et sikkert sted

Totalevakuering kan ske ved, at hele bygningen tømmes simultant. Ved simultan evakuering tages der udgangspunkt i, at evakueringen af en bygning starter samtidigt for alle bygnings afsnit med fælles flugtveje. Det forudsættes, at alle flugtveje anvendes ved evakueringen, og at flugtveje kan anvendes under evakueringen, som det eksempelvis vil være
tilfældet for beskyttede flugtveje. Evakueringen forudsættes at ske til terræn i det fri. Denne type evakuering ligger til grund for flugtveje som beskrevet i de efterfølgende afsnit.

Totalevakuering kan f.eks. benyttes i forbindelse med evakuering af bygninger, hvor der er et ønske om at evakuere hele bygningen, eller hvor det er eneste reelle mulige evakueringsstrategi. Som eksemlpe kan det tænkes, at der i en bygning i anvendelseskategori 2, som anvendes som skole for børn, kan være et ønske om at få samlet alle skolens elever, uanset hvor branden er opstået.

Andre eksempler på, hvor anvendelse af totalevakuering kan være hensigtsmæssig, kan være en opgang i etageboligbyggeri i anvendelseskategori 4, hvor alle lejligheder har direkte adgang til én flugtvejstrappe. Da alle anvender samme flugtvej, kan det være nødvendigt, at evakueringen kan sker samtidigt. Tilsvarende kan gøre sig gældende for en biograf i anvendelseskategori 3 med flere sale, hvor salene har fælles flugtveje. Her vil det ligeledes ofte være hensigtsmæssigt at evakuere hele biografen samtidigt.

Ved en faseopdelt evakuering evakueres først de personer, der opholder sig i de brandmæssige enheder, der kan påvirkes af branden, mens personer, der er i umiddelbart sikkerhed for branden, evakueres efterfølgende. Dermed sikres, at personer, der er i fare for branden, først får mulighed for at forlade bygningen, mens personer, der ikke er i umiddelbart fare for branden, evakueres efterfølgende. Dermed tilgodeses flugtvejene for dem, der har mest brug for at forlade bygningen. Det forudsættes tillige at, alle personer i en bygning kan evakueres til terræn i det fri enten direkte eller via et sikkert sted.

Ved faseevakuering er det vigtigt, at personer, der ikke evakueres først, er i sikkerhed for branden, f.eks. i anden brandsektion, og at flugtvejene er udformet, så de er sikre at anvende for alle personer.

Et eksempel på en bygning, hvor der ofte kan anvendes faseevakuering, er en bygning med gulv i øverste etage mellem 22 og 45 m over terræn, der er inddelte i flere brandsektioner, og hvor flugtvejstrapper er udført som sikkerhedstrapper. Her kan en mulig evakueringsstrategi være, at den brandsektion, hvor branden er opstået og eventuelt brandsektionen over, evakueres først, efterflugt af de øvrige brandsektioner i forskudte faser. Brandsektioneringen kan sikre, at personer i de øvrige brandsektioner vil være i sikkerhed, indtil de kan evakueres fra bygningen, og sikkerhedstrapperne gør, at trapperne er passable.
Det bør ligeledes forudsættes, at der installeres automatisk detektering af branden, der sikrer at brandsektionen, hvori branden er opstået, evakueres først, og at der er kommunikationssystemer/varslingsanlæg, der varsler personer om, at de enten skal forlade bygningen eller vente. Hvis personer i andre brandsektioner kan høre varslingen, samtidig med at de ikke forventes at forlade bygningen, kan det i nogle tilfælde være hensigtsmæssigt at varsle disse personer herom. I alle tilfælde bør varslingen overvejes nøje og tilrettelegges for den enkelte bygning.

Ved evakuering via et sikkert sted evakueres personer, der opholder sig i brandmæssige enheder, der påvirkes af branden, horisontalt eller vertikalt til et sikkert sted, hvorfra de i sikkerhed kan evakuere til terræn i det fri.

Formålet med et sikkert sted i bygningen er, at personer kan flygte hertil og opholde sig i sikkerhed, indtil de enten selv kan bevæge sig ud af bygningen via bygningens øvrige flugtveje eller blive reddet ud af bygningen af redningsberedskabet. Et sikkert sted i bygningen kan være en anden brandmæssig enhed, som f.eks. en anden brandsektion, hvorfra der er adgang til flugtvej eller direkte til terræn i det fri.

Ved vurderingen af et sikkert sted skal det tillige tages i betragtning, om arealet af det sikre sted er tilstrækkeligt til det antal personer, som under en brand skal kunne søge tilflugt her. Da personerne er i sikkerhed for branden, vil der normalt ikke være behov for supplerende beskyttelse af gangarealer, der fører til flugtvejen eller til terræn i det fri forudsat, at gangarealet ud af bygningen til enhver tid er fremkommelig og adskilt fra den brandsektion, hvori branden er opstået. Derudover vil der normalt ikke være behov for, at der fra indgangen til det sikre sted maksimalt er 25 m til nærmeste udgang, og bredden af udgangene fra det sikre sted kan være mindre end 10 mm pr. person, der anvender udgangene herfra. Dette er under forudsætning af, at det sikre sted og varslingen er udformet på en sådan måde, at personer, som skal opholde sig det sikre sted, reelt er i sikkerhed.

Et eksempel på et sikkert sted kan være et sengeafsnit i anvendelseskategorii 6. Fra sådanne sengeafsnit kan man normalt ikke totalevakuere, da der er tale om sengeliggende og ofte ikke selvhjulpne patienter, hvor nogle patienter på grund af deres tilstand og afhængighed af eksempelvis elektronisk udstyr ikke kan flyttes, mens andre kun vanskelt kan evakuieres sengeliggende, eller som skal hjælpes med at gå. Disse patienter kan ofte med fordel evakueres vandret til et sikkert sted indenfor samme bygningsafsnit eller til et andet bygningsafsnit, hvorfra det vil være muligt at flytte patienterne videre ud af bygningen efter behov. Det bør her tillige dokumenteres, at der er plads til de ekstra patienter det sikre sted.
Ved brug af brandteknisk dimensionering vil det være muligt at udbygge og yderligere kombinere de nævnte evakueringsstrategier.

Muligheden for anvendelse af et sikkert sted er ikke yderligere belyst i eksemplerne i dette afsnit.

Flugtvejene skal være lette at identificere, nå og anvende, jf. bygningsreglement 2015, kapitel 5.2, stk. 2.

Det fremgår endvidere af bygningsreglement 2015, kapitel 5.2, stk. 4, at der i det tidsrum, hvor flugtvejene skal anvendes til evakuering, ikke må forekomme temperaturer, røgkoncentrationer, varmestråling eller andre forhold, der hindrer evakuering.

Formålet med flugtvejene er, at de mennesker, der opholder sig i bygningen, så hurtigt som muligt kan komme i sikkerhed i eller uden for bygningen i tilfælde af brand, enten ved egen eller ved andres hjælp.

Flugtvejene bør derfor udføres som gangarealer, beskyttede gange (flugtvejsgange) og beskyttede trapper (flugtvejstrapper), der ikke indrettes til andre formål end trafik. Flugtvejsgange kan dog indrettes til andre formål, men det er da vigtigt at sikre, at dette ikke reducerer gangenes anvendelighed som flugtvej eller medfører en væsentligt forøget brandbelastning eller brandrisiko.

For at sikre, at flugtvejene til enhver tid er tilgængelige, er det desuden vigtigt, at bolig- og erhvervsenheder ikke har flugtvej, som fører gennem anden bolig- eller erhvervsenhed, ligesom det bør sikres, at evakuering ikke sker f.eks. fra et kontorlejemål over i en flugtvejsgang, som tilhører et andet kontorlejemål. Kun flugtveje, der er udlagt som fællesarealer, vil normalt kunne betragtes som flugtveje for flere selvstændige enheder.

Det fremgår af bygningsreglementet 2015, kapitel 3.2.1, stk. 2, at der ved alle yderdøre skal være niveauafri adgang til enheder i bygningens stueetage (adgangsetage). Af vejledningsteksten til bestemmelsen fremgår det endvidere, at det omfatter yderdøre, døre ved flugtveje og nødudgange i stueetagen samt have-, altan og terrassedøre. Det vil sige, at alle yderdøre i stueetagen, der indgår i det samlede system af flugtveje fra stueetagen skal udføres med niveauafri adgang. Yderdøre i forbindelse med flugtveje i eksempelvis trapperum fra bygningens øvrige etager, der udelukkende står i forbindelse med disse etager og ikke betjener stueetagen kan udføres uden niveauafri adgang.
På branddøre i flugtveje, der forventeligt bliver meget benyttet, kan det anbefales at installere et automatisk branddørlukningsanlæg (ABDL-anlæg).

En flugtvej skal til enhver tid være anvendelig ved evakuering, jf. bygningsreglement 2015, kapitel 5.2, stk. 1. Hvis elevatorer, rullende fortove, automatiske døre og porte, døre med elektriske låsesystemer, skydedøre, drejedøre, tilkørselsramper samt døre ved tælleapparater, kasseopstillinger eller lignende indgår i flugtvejen, er det vigtigt, at installationerne udføres og placeres, så de ikke blokerer eller på anden måde forringer flugtvejen. Det vil sige, at der eksempelvis bør træffes foranstaltninger, så automatiske døre kan åbnes på trods af strømsvigt mv.

Flugtveje skal i øvrigt opfylde bestemmelserne i bygningsreglement 2015, kapitel 3.2, om adgangsforhold.

I det efterfølgende er en udgang:
- en dør til terræn i det fri, evt. via vindfang, eller
- en dør til flugtvejsgang i anden brandmæssig enhed som f.eks. anden brandsektion, hvis gangen har dør til det fri eller til trappe, der er flugtvej, eller
- en dør til trappe, der er flugtvej.

En trappe, der er flugtvej, skal have udgang direkte til terræn i det fri.

2.2 Antal flugtveje
Bestemmelsen i bygningsreglement 2015, kapitel 5.2, stk. 1 betyder bl.a., at der fra ethvert rum, gårdareal og lignende skal være tilstrækkelig adgang til flugtveje.

Ved vurderingen af, om der er tilstrækkelig adgang til flugtveje, kan f.eks. indgå antal personer, bygningens brandmæssige opdeling, brandcellens udformning, herunder størrelse og indretning samt anvendelsen.

Hvis en brandmæssig enhed, som f.eks. en brandcelle udføres med et sådan antal døre til flugtveje, at personer ikke kan blive fanget i brandcellen i tilfælde af brand, vil der normalt være tilstrækkelig antal døre til flugtvej. Dette kan sædvanligvis opnås ved, at brandcellen udføres med 2 døre til det fri eller til flugtvejsgang, der er placeret i eller umiddelbart ved brandcellens modstående ender.
Figur 2.1. Døre til flugtveje fra brandcelle over 150 m² og med højst 50 personer.

I brandceller i 2 etager vil det, for at undgå at personer bliver fanget i brandcellen, som regel være nødvendigt, at der er døre til flugtvej eller til det fri fra begge etager.

Ligeledes er det vigtigt, at flugtmuligheden ikke hindres af branden. Dette vil normalt ikke ske, hvis døre fra en brandcelle fører ud til en flugtvejsgang, som i modstående retninger fører til 2 af hinanden uafhængige udgange og den maksimale afstand fra dør fra brandcelle og til nærmeste udgang ikke overstiger 25 m.

For mindre brandceller, der er let overskuelige, og hvor der er få personer, hvilket typisk kunne være brandceller op til omkring 150 m² og anvendt til højst 50 personer, vil det dog ofte være tilstrækkeligt at have én dør til det fri eller til flugtvejsgang, som i modstående retninger fører til 2 af hinanden uafhængige udgange. Eksempler herpå er kontorer, undervisningsrum, hotelværelser mv.
I rum, der frembyder særlig fare for, at brand opstår, som f.eks. fysik-, kemi-, sløjdf- og billedkunstlokaler, større teknikrum, restaurant- og skolekøkkener, vil det på grund af den øgede brandrisiko altid være hensigtsmæssigt at udføre 2 døre til flugtvej, som er anbragt på en sådan måde, at ingen personer i rummet afsættes fra en udgang i tilfælde af brand i rummet.

Endelig kan der i rum beregnet til mange personer være behov for ekstra sikre flugtveje, da redningsberedskabet kan have vanskeligheder med at redde mange mennesker ud af en bygning via redningsåbningerne. Normalt kan redningsberedskabet håndtere omkring 50 personer i et rum, der udgør en selvstændig brandmæssig enhed, som eksempelvis en brandcelle. For at opretholde sikkerhedsniveaet i brandceller med mere end 50 personer vil det derfor normalt være nødvendigt, at de udføres med mindst 2 flugtveje, der uafhængigt af hinanden fører helt til terræn i det fri, placeret i eller umiddelbart ved brandcelens modstående ender, så en flugtvej altid vil være tilgængelig i tilfælde af brand.
Figur 2.3. Døre til flugtveje fra brandcelle mere end 50 personer, men mindre end 150 personer.

I brandceller med 150 personer eller flere viser erfaringerne, at 2 flugtveje ikke altid er tilstrækkelige, da alle personer, hvis den ene flugtvej er blokeret af branden, skal anvende samme flugtvej. Det kan derfor være hensigtsmæssigt, at der i brandceller, som anvendes til mange personer, etableres en ekstra udgang og flugtvej for hver yderligere påbegyndt 200 personer (se tabel 2.1).
Generelt kan antallet og bredden af flugtveje fra områder med mange personer alternativt fastlægges på grundlag af en brandteknisk dimensionering.

Afhængig af anvendelsen kan det i nogle tilfælde være tilstrækkeligt med et mindre antal flugtveje.

Eksempler herpå er:
- Brandceller i anvendelseskategori 1 med et areal på højst 150 m² og beregnet til få personer (højst 50 personer).

Da personerne kender flugtvejen, kan brandcellen have adgang til flugtvej gennem et andet rum, som har minimum 2 udgange eller 2 flugtveje, der uafhængigt af hinanden fører helt til terræn i det fri, placeret i eller umiddelbart ved brandcellens modstående ender. Afstanden fra den fjernest beliggende brandcelles dør til udgangen har betydning for risikoen for, at personer bliver fanget i bygningen – jo længere flugtvej, jo større risiko. Normalt vil en afstand på højst 25 m være passende. Eksempler herpå er et cellekontor i et storrumskontor eller et mindre værkførerkontor i et produktionslokal.

Tabel 2.1. Eksempler på udførelse af flugtveje og udgange.

<table>
<thead>
<tr>
<th>ANTL. PERSONER PR. RUM</th>
<th>DEN ENKELTE DØRS MINDSTE FRI BREDD (CM)</th>
<th>DØRENES SAMLEDE MINDSTE FRI BREDD (CM)</th>
<th>ANTL. UAFHÆNGIGE DØRE TIL FLUGTVEJ **</th>
<th>ANTL. UAFHÆNGIGE FLUGTVEJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mellem 150 og 349</td>
<td>120*</td>
<td>150-349*</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Mellem 350 og 549</td>
<td>120*</td>
<td>350-549*</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Mellem 550 og 749</td>
<td>120*</td>
<td>550 – 749*</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Mellem 750 og 949</td>
<td>120*</td>
<td>750 – 949*</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Mellem 950 og 1.149</td>
<td>120*</td>
<td>950 – 1.149*</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

* Se afsnit 2.3 vedrørende fri bredde
** Døre til flugtveje fra en brandcelle kan ofte anses for at være uafhængige, hvis de ligger i en indbyrdes afstand af mindst 5,0 m.
• Brandceller i anvendelseskategorier 1, 2, 4 og 5, hvor underkant af redningsåbning er tæt på terræn, hvilket typisk er op til 2,0 m over terræn.

I denne type brandceller, hvor redningsåbningerne er placeret tæt på terræn, kan evakuering let ske via redningsåbningerne. Brandcellen kan derfor have døre til flugtvejsgang, som kun i én retning fører til en udgang. Afstanden fra den fjernt beliggende brandcellers dør til udgangen har betydning for risikoen for, at personer bliver fanget i bygningen – jo længere flugtvej, jo større risiko. Normalt vil en afstand på højst 25 m være passende.

• Boliger i anvendelseskategori 4, samt bygningsafsnit i anvendelseskategorierne 1 og 2 med et etageareal på højst 150 m², og som er beregnet til højst 50 personer, såfremt der kun er ét sådanne bygningsafsnit, der har adgang til samme flugtvejstrappe.

I bygninger med altangang bør det sikres, at personer i tilfælde af brand ikke kan blive afskåret fra flugtvejene. I bygninger, hvor gulv i øverste
etage er højst 9,6 m over terræn, vil redningsberedskabet kunne nå altangangen med deres bærbare stiger.

Figur 2.5. Bygning, hvor gulv i øverste etage er højst 9,6 m over terræn.

I bygninger, hvor gulv i øverste etage er mere end 9,6 m over terræn, og hvor redningsberedskabet derfor er nødt til at anvende motorstige, anses en afstand på omkring 25 m fra brandcellens dør til trappen som acceptabelt, når der udlægges brandredningsarealer ved enderne af altangangen.

Figur 2.6. Bygning, hvor gulv i øverste etage er mere 9,6 m, men mindre end 22 m over terræn.

I bygninger, hvor redningsberedskabets stiger ikke kan nå altangangen, det vil normalt sige bygninger, hvor der er mere end 22 m til gulv i øverste etage eller hvor altangangene er placeret så brandvæsenet ikke kan komme frem til disse, vil evakuering af bygningen udelukkende være baseret på altangangen, som derfor bør indrettes, så der altid er adgang til en flugtvejstrappe. Det vil sige, at der er adgang til trapper i modsat retning fra hver enhed. Afstanden mellem dør til brandcelle og dør til nærmeste trappe har indflydelse på evakueringstiden. For at begrænse evakueringstiden vil en afstand på cirka 25 m ofte være rimelig.
Ved gårdarealer, tagterasser mv. (herunder atriumgårde og lysgårde) som helt er omgivet af bygninger eller konstruktioner, kan der f.eks. sikres tilstrækkelige flugtveje, hvis der etableres 2 af hinanden uafhængige udgange, som er placeret i eller umiddelbart ved gårdarealets modstående ender.

2.3 Bredde af flugtveje samt døre til og i flugtvej

Det fremgår af bygningsreglement 2015, kapitel 3.2 om adgangsforhold, at døre i fælles adgangsveje skal have en fri bredde på mindst 77 cm. Ligeledes skal gange i fælles adgangsveje have en fri bredde på mindst 1,3 m, og trapper skal have en fri bredde på mindst 1,0 m.

Det fremgår desuden af bygningsreglement 2015, kapitel 5.2, stk. 3, at flugtvejene skal dimensioneres til det antal personer, som flugtvejene er beregnet til. Tilsvarende gælder for døre i og til flugtveje.

De bredder, der er angivet i bygningsreglement 2015, kapitel 3.2, vil derfor ikke altid være tilstrækkelige til at sikre, at brandsikkerhedsniveauet kan anses for tilfredsstillende. Dette gælder f.eks. i bygninger med mange mennesker, hvor flugtvejenes bredde er afgørende for, hvor lang tid det tager at evakuere bygningen. I sådanne bygninger, hvor der f.eks. er undervisningsrum, forsamlingslokaler og butikker, vil en samlet fri bredde på udgangsdøre fra brandcellen samt i flugtveje og døre i eller til flugtveje på 10 mm for hver person, som brandcellen eller flugtvejen er beregnet til, normalt være tilstrækkelig.
Det er desuden vigtigt, at den samlede flugtvejsbrede fordeles ligeligt på udgangene eller på de uafhængige flugtveje, medmindre der fra brandcellen er flugtveje, der udelukkende anvendes som nødudgange. Her bør der tages højde for, at de fleste personer i tilfælde af brand normalt vil søge at flygte via hovedadgangsvejen.

Ved de primære døre i flugtveje fra rum, der tilsammen er indrettet til mere end 150 personer, samt ved døre i flugtveje, som anvendes til mere end 150 personer, bør det sikres, at minimum 2 personer kan passere gennem døren samtidig. Praktiske erfaringer viser, at en fri dørbredder på minimum 1,2 m er tilstrækkelig hertil.

Erfaringerne viser, at personer som udgangspunkt vil søge mod den dør, som de kom ind ad, hvorfor disse bliver de primære flugtvejsdøre. Disse døre bør derfor have en fri bredde på 1,2 m. De øvrige døre kan udføres med en mindre bredde dog minimum fri bredde på 77 cm, men det forudsætter, at den samlede frie flugtvejsbrede mindst er 10 mm per person, som rummet er beregnet til.

Den maksimale personbelastning i en brandcelle i anvendelseskategori 3, det vil sige antallet af personer, som brandcellens udgange og/eller flugtveje dimensioneres efter, kan ud fra forsøg og praktiske erfaringer normalt fastsættes til:

Tabel 2.2. Eksempler på personbelastning.

<table>
<thead>
<tr>
<th>ANVENDELSESKATEGORI 3</th>
<th>PERSONER PR. M² GULVAREAL</th>
<th>EKSEMPLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Områder med en lav personbelastning på grund af udstilling, salgstopstillinger mv.</td>
<td>0,3-1,0</td>
<td>Salgslokaler, udstillinger, butikker mv.</td>
</tr>
<tr>
<td>Områder med stoleopstilling med eller uden borde</td>
<td>1,0</td>
<td>Restauranter mv., forsamplingslokaler, diskoteker, selskabslokaler, kirker mv.</td>
</tr>
<tr>
<td>Områder, hvor mange personer samles stående</td>
<td>3-5</td>
<td>Dansegulve, områder foran scene, barer og lignende, hvor der ikke er stoleopstilling</td>
</tr>
</tbody>
</table>

I forbindelse med dimensioneringen af en konkret bygning kan flugtvejene dimensioneres på grundlag af den aktuelle personbelastning. Såfremt der efterfølgende sker en anvendelsesændring, der medfører en større personbelastning vil dette efter bygelovens § 2 betyde, at der skal foretages en fornyet konkret vurdering af kommunalbestyrelsen. Det
kan derfor ofte ved dimensioneringen af en bygning være hensigtsmæssigt, at sikre en vis fleksibilitet i brugen af lokalerne.

I forsamlingslokaler med fastmonterede stole og i andre rum, som udelukkende benyttes i overensstemmelse med pladsfor-delingsplaner, som er godkendt af beredskabsmyndigheden, kan der regnes med det antal personer, som fremgår af pladsfor-delingsplanerne.

Fra opholds- eller beboelsesrum i anvendelseskategorier 6, hvor der opstilles hospitalssenge, er det vigtigt, at disse kan passere gennem døren til flugtvejsgangen. I de fleste tilfælde vil en hospitalsseng kunne passere en dør med en fri bredde på 1,2 m.

Ved bygningsafsnit i anvendelseskategori 6 er det desuden vigtigt, at en båre og en brandmand kan passere hinanden i flugtvejsgangen. Dette hensyn vil normalt være tilgodeset, hvis gangen har en fri bredde på 1,8 m. I nogle tilfælde, som f.eks. hospitaler, kan der være behov for, at to hospitalssenge kan passere hinanden, og i så tilfælde bør den frie bredde af flugtvejsgange mindst være 2,4 m.

Anvendes bygningen til personer med nedsat mobilitet, vil evakueringshastigheden kunne øges ved, at gangen forsynes med håndlister i begge sider.

2.4 Udformning af flugtveje samt døre til og i flugtvej

Af bygningsreglement 2015, kapitel 5.2, stk. 1 og 3 fremgår det, at døre i og til flugtveje skal udformes på en sådan måde, at Hurtig og betryggende evakuering kan ske. Desuden skal døre i flugtvejene være lette at åbne uden brug af nøgle, låsekort eller særligt værktøj.

Ved udformningen af brandceller og flugtveje er det vigtigt at sikre, at personer har mulighed for hurtigt at forlade bygningen. Derfor er det vigtigt, at udkørsdøre og flugtvejsdøre fra brandceller samt døre i flugtveje er lette at identificere, åbne og passere i flugtretningen, ligesom det er vigtigt, at anordninger til åbning af døre let kan betjenes med et enkelt greb, så åbning af døre i flugtveje til enhver tid kan ske af enhver person i bygningen. Døre i eller til flugtveje, som skal benyttes af mere end 150 personer, bør tillige åbne i flugtretningen.

Dette udelukker ikke anvendelsen af elektriske løsesystemer, forudsat at flugtvejene også under strømsvigt er let passable i flugtretningen, ligesom aktiveringens skal være synlig, forståelig og placeret tæt ved døren for at sikre, at alle kan se, hvordan døren kan betjenes.
Ved indretning af rum til mere end 50 personer samt ved udgangsdøre fra rum på mere end 150 m² i anvendelseskategori 3 er det vigtigt at tage højde for, at dørene skal kunne passeres af mange mennesker på samme tid. For at tilgodese dette kan dørene udføres på samme måde som døre i flugtveje, det vil bl.a. sige, at dørene bør åbne i flugtretningen.

![Figur 2.8. Døre fra rum med mange mennesker til flugtvejsgang eller det fri.](image)

Flugtveje bør kunne passeres i flugtretningen uden brug af nøgle eller særligt værktøj, når der sker almindelig anvendelse/benyttelse af de rum, som flugtvejene har tilknytning til. Redningsåbninger bør til enhver tid let og uhindret kunne åbnes indefra uden brug af nøgle eller særligt værktøj.

I helt særlige tilfælde, f.eks. i fængsler, institutioner for demente og lignende, hvor utilstøgt udgang skal undgås, kan døre til og i flugtveje dog udføres på en sådan måde, at de ikke kan åbnes uden brug af nøgle eller særligt værktøj. Det faste personale skal dog altid have mulighed for at åbne døre til og i flugtvejene.

Hvis der anvendes to-fløjede døre, er det en god ide at forsyne dem med beslag, der åbner begge dørplader ved betjening af et enkelt greb placeret i bekvem højde. Beslag, der kan anvendes til to-fløjede døre, er f.eks.

- et trykgreb eller vandrette stænger, der åbner begge dørplader ved tryk mod døren,
- en paskvil, der betjenes ved nedadgående bevægelse af et lodret greb eller et almindeligt vandret dørhåndtag.

Hvor døre i flugtveje samtidig er branddøre, der er selvlukkende, er det vigtigt, at der ved valg af beslag tages højde for, at beslaget ikke sætter
lukkefunktionen ud af drift. Dette kan f.eks. undgås ved brug af en selv-
lukkende paskvil.

2.5 Brandmæssig adskillelse af flugtveje

Det fremgår af bygningsreglement 2015, kapitel 5.2, stk. 4, at flugtveje skal være udført, så de kan anvendes til evakuering i den tid, der nødvendig for at evakuere bygningen. Der henvises til afsnit 2.8 Trapper, trap-perum, elevatorsakte og luftsluser for så vidt angår brandmæssig ad-
skillelse af flugtvejstrapper.

Da en flugtvej skal kunne anvendes i hele evakueringstiden, er det vigtigt, at flugtvejen udgør en selvstændig brandmæssig enhed, f.eks. udfør-
met som gange og trapper. For at sikre, at en brand ikke påvirker flugt-
vejen, kan gange f.eks. udførtes som selvstændige brandceller, hvor-
mod trapper kan placeres i trapperum, der udførtes som selvstændige
brandsektioner.

Normalt vil døre, som er placeret i brandadskillende vægge, skulle have den samme brandmodstandsevne som væggen. I visse tilfælde er det dog
forsvarligt at anvende døre med en mindre brandmodstandsevne.

Eksempler herpå er:

* Dør i brandsektionsvæg mellem gange, der er flugtveje.

 En sådan dør vil primært blive påvirket af kold røg, og det kan derfor være tilstrækkeligt, at døren udføres som dør klasse E 60-C [F-dør 60]. Døren bør sikres med et ABDL-anlæg.

* Døre mellem flugtvejsgang og de rum, som flugtvejsgangen betjener.

 For denne type døre vil det normalt være tilstrækkeligt, at de udføres som dør klasse EI, 30 [BD-dør 30-M], dog som dør klasse EI, 30-C [BD-dør 30] mod rum med oplags- eller depotfunktion, f.eks. køk-
kener, kopirum og lignende.

* Døre mellem flugtvejsgang og baderum, wc-rum og lignende rum, hvor der er en ubetydelig brandbelastning.

 På grund af den lave brandbelastning på begge sider af døren kan disse døre udføres uden krav til brandmodstandsevne.
• Døre fra trapperum eller fra elevatorskakt til flugtvejsgang.

Da brandbelastningen også her er relativ lille, kan sådanne døre udføres som dør klasse E 30-C [F-dør 30]. I soverumsafsnit bør dørene sikres med et ABDL-anlæg. I bygninger, hvor gulv i overskr. er højst 22 m over terræn, kan døre fra elevatorskakt til flugtvejsgang alternativt udføres som elevator dør klasse E-30 jf. DS/EN 81-58, hvis elevatorskakten i øvrigt udføres iht. retningslinierne i afsnit 2.8.

• Døre til opdeling af flugtvejsgange.

Lange flugtvejsgange, der kan blive røgfylde, kan være vanskelige at anvende til evakuering. Hvis gangene opdeles med røgtætte døre (røgopdeling), vil redningsberedskabet have bedre mulighed for at evakuere bygningen. I almindelige bygninger kan en røgopdeling på højst 50 m være passende, uden at det forringer evakueringsmulighederne. Er der derimod tale om bygninger med natophold og/eller personer med en nedsat mobilitet, vil en røgopdeling på højst 25 m være passende. Døre til opdeling af flugtvejsgange vil i tilfælde af brand først og fremmest blive påvirket af kold røg, og dørene kan derfor udføres som dør klasse CS_a [selvlukkende røgtæt dør]. Dørene bør sikres med et ABDL-anlæg.

2.6 Passager i brandceller

Det fremgår af bygningsreglement 2015, kapitel 5.2, stk. 2, at flugtveje skal udfomres, så de personer, der opholder sig i bygningen, let kan nå den beskyttede del af flugtvejen.

Det kan derfor anbefales, at afstanden fra et vilkårligt punkt i et rum, som f.eks. kan være udført som en brandcelle, til nærmeste dør til det fri eller dør til flugtvej ikke overstiger 25 m. De 25 m måles som udgangspunkt, som den direkte afstand uden hensyntagen til inventar mv.

I store rum, hvor mange mennesker typisk opholder sig samtidig, som f.eks. forsamlingslokaler og butikker i anvendelseskategori 3, er det vigtigt ved indretningen af brandcellerne at tage hensyn til, at de mennesker, der opholder sig i brandcellen, på en let og overskuelig måde kan nå flugtvejene. Dette hensyn kan sædvanligvis tilgodeses ved, at der etableres passager til døre til det fri eller døre til flugtvejsgange via gangarealer med en bredde på 1,3 m, dog ikke mindre end 10 mm for hver person, der skal passere det pågældende gangareal for at komme til en dør til det fri eller en flugtvejsgang.
2.7 Redningsåbninger

Redningsåbninger skal i henhold til bygningsreglement 2015, kapitel 5.2, stk. 7, være placeret og udformet på en sådan måde, at personer har mulighed for at give sig til kende overfor redningsberedskabet og kan reddes ud via redningsberedskabets stiger eller ved egen hjælp. Hvor dette ikke er muligt, skal der, jf. bygningsreglement 2015, kapitel 5.2, stk. 8, træffes særlige foranstaltninger. En redningsåbning kan tillige medvirke til at fjerne røg fra det rum, hvor redningsåbningen er placeret.

En redningsåbning har således følgende tre funktioner:

- Give personer, der opholder sig i bygningen, mulighed for at give sig til kende over for redningsberedskabet.
- Personredning, eventuelt via redningsberedskabets stiger, hvis flugtvejene i bygningen er blokeret.
- Røgudluftning.

I nogle tilfælde kan rum forsynes med åbninger, der ikke kan anvendes til personredning, men som kan anvendes til, at personer kan give sig til kende over for redningsberedskabet og til røgudluftning.

Mulighed for at personer kan give sig til kende over for redningsberedskabet

Redningsåbninger giver personer mulighed for at give sig til kende over for redningsberedskabet. I rum, der ikke forsynes med redningsåbninger, kan muligheden for at give sig til kende f.eks. opnås ved, at der indefra er let adgang til oplukkelige vinduer eller lemme, der ikke nødvendigvis opfyldte alle retningslinjerne i afsnit 2.7.1 og 2.7.2.

Muligheden for at give sig til kende er normalt tilgodeset, hvis der gennem to døre er adgang til naborum, hvorfra der er mulighed for at give sig til kende. I adskillelsen mellem naborum, der ikke må være i åben forbindelse med hinanden, må der være en dør. En dør til flugtvejstrappe kan sidestilles med en dør til naborum med redningsåbning.

I bygninger, hvor gulv i øverste etage ligger mellem 22 og 45 m over terræn, vil det ofte være svært at se og høre personer, som forsøger at give sig til kende fra stor højde, og der kan være et ønske om ikke at etablere åbninger i facader i høje bygninger. I nogle tilfælde, hvor etagerne er indrettet på en sådan måde, at der i tilfælde af brand kan
være risiko for, at flugtvejsgange kan være blokeret for evakuering af personer, vil der være behov for at redningsberedskabet redder personer ud af bygningen. Her kan det være nødvendigt for redningsberedskabet på anden vis at skabe overblik over, hvor der er personer, der skal reddes. Det kan være hensigtsmæssigt at supplerere et eventuelt varslingsanlæg med et kommunikationssystem, så personerne kan give sig til kende over for redningsberedskabet. I nogle tilfælde kan det også være hensigtsmæssigt, at redningsberedskabet kan kommunikere beskeder ud til personer i bygningen om, hvordan de skal forholde sig, indtil de kan blive reddet ud af bygningen.

Som eksempler på et sådan system kan nævnes et kommunikationssystem, f.eks. telefon, som giver mulighed for opkald til og fra en reception eller direkte til redningsberedskabets brandcentral. Denne løsning kan eksempelvis anvendes fra rum i anvendelseskategori 5.

Det er dog vigtigt, at valg af system sker efter en konkret vurdering og tilpasses bygningens og bygningsafsnittenes brug og organisation samt redningsberedskabets behov for at kunne skabe sig overblik over, hvor der eventuelt kan være personer.

Personredning

I en brandcelle bestående af flere rum vil det være hensigtsmæssigt, at der er en redningsåbning i hvert rum. Dog vil der være tilfælde, hvor det ikke er nødvendigt at der i alle rum, er adgang til redningsåbninger, der er udført, så der kan foretages personredning gennem åbningerne. Alle rum i en brandcelle bør dog have direkte adgang til rum med rednings åbning til personredning. Antal og placering af redningsåbningerne bør følge anvisningerne i afsnit 2.7.1.

Redningsåbninger til personredning bør normalt udføres som beskrevet i afsnit 2.7.1 og 2.7.2.

Røgudluftning

I rum hvor redningsåbninger til personredning udelades kan det, af hensyn til redningsberedskabets indsatsumlighed, i nogle tilfælde være nødvendigt at sikre muligheden for røgudluftning på anden vis, se afsnit 6.2 om røgudluftning.

Ved en redningsåbning forstås i det følgende en åbning, der kan opfylde alle tre ovennævnte funktioner.
2.7.1 Antal og placering af redningsåbninger

Ved udformningen af redningsåbninger er det vigtigt at tage højde for, hvor mange personer brandcellen/rummet er beregnet til, jf. bygningsreglement 2015, kapitel 5.2, stk. 7. Det vil ofte være tilstrækkeligt, at der i en brandcelle/rum med op til 10 personer er 1 redningsåbning til personredning. Er der mere end 10 personer, bør antallet af redningsåbninger til personredning øges tilsvarende. Dette omfatter dog ikke:

- Brandceller/rum, hvorfra der er to af hinanden uafhængige flugtveje helt til terræn i det fri,
- brandceller/rum, hvorfra der er dør direkte til terræn i det fri.
- Brandceller/rum, hvorfra der gennem to døre er adgang til redningsåbninger i naborum, der ikke er i åben forbindelse med hinanden. I adskillelsen mellem naborum, der ikke må være i åbenforbindelse med hinanden, må der være en dør. Dør til flugtvejstrappe, kan side-stilles med dør til naborum med redningsåbning. Se figur 2.9.

![Figur 2.9. Adgang til redningsåbning via naborum.](image)

Brandceller/rum med flere etager bør have redningsåbninger til personredning på alle etager. Antal redningsåbninger på hver etage afhænger af antal personer, der opholder sig på den enkelte etage.

For at en redningsåbning kan opfylde sin funktion, bør den nemt kunne nås, hvilket f.eks. kan opnås ved, at redningsåbningerne fordeles jævnt i brandcellen/rummet.

Såfremt der er en altan knyttet til brandcellen/rummet, kan denne med fordel benyttes i forbindelse med redningsåbningen.
2.7.2 Udformning af redningsåbninger til personredning

Redning af personer gennem en redningsåbning kan lade sig gøre, hvis den har en fri højde og bredde på tilsammen 1,5 m, hvor højden er mindst 0,6 m og bredden mindst 0,5 m.

![Diagram af redningsåbning](image)

Figur 2.10. Udformning af redningsåbning.

Er redningsåbningen placeret tæt på terræn, f.eks. mindre end ca. 2,0 m over terræn, hvor risikoen for personskader i tilfælde af evakuering er minimal, vil det være forsvarligt at have en mindre højde på redningsåbningen.

I tagflader, hvor det kan være vanskeligt at nå redningsåbningen, vil det være en fordel, at redningsåbningen i åben stilling har en fri højde, der ikke er mindre end 0,8 m, når gulv i øverste etage er mere end 9,6 m over terræn, da redningsberedskabet i disse tilfælde skal anvende en motorstige.

Tilsvarende hensyn bør inddrages ved tagrum, hvor gulvet ligger mere end 5,5 m over terræn. For at redningsberedskabet kan nå redningsåbningerne i tagfladen med deres stiger, er det normalt vigtigt, at den vandrette afstand mellem tagkanten og underkant af åbningen ikke er større end 1,4 m.

For at personer let kan anvende redningsåbningen, er det vigtigt, at der indefra er let adgang til redningsåbningen, og at den ikke kan låses eller på anden måde blokeres.

Endelig bør det sikres, at redningsåbninger placeres i en afstand fra gulv, så personer kan nå dem og reddes ud gennem åbningerne. De fleste personer vil kunne komme ud af en redningsåbning, der er placeret i en afstand fra gulv til underkant af redningsåbninger på op til 1,2 m. Alternativt kan der f.eks. etableres et fast trin eller andet, så redningsåbningen kan nås indefra.

Redningsåbninger skal let og uhindret kunne åbnes indefra uden brug af nøgle eller særligt værktøj, når der sker almindelig anvendelse/benyttelse af bygningen.

I helt særlige tilfælde, f.eks. i åbne fængsler, institutioner for demente og lignende, hvor utilsigtet udgang skal undgås, kan redningsåbninger dog udformes på en sådan måde, at de ikke kan åbnes uden brug af nøgle eller særligt værktøj. Personalet skal dog altid have mulighed for at åbne redningsåbningerne.

I høje bygninger, hvor redningsåbningen kun kan nås via redningsbe- redskabets motorstiger, er det vigtigt, at der etableres brandredningsareal, der er udformet, så motorstigerne får tilstrækkelige gode manøvremuligheder.

I bygninger, hvor der er redningsåbninger placeret over håndstigeredningshøjde, dvs. i bygninger med gulv i øverste etage mere end 9,6 m over terræn, bør redningsåbningerne være udført på en sådan måde, at evakuering kan ske hurtigst muligt fra alle etager i bygningen. Dette kan f.eks. opnås ved, at alle redningsåbninger, bortset fra redningsåbninger i tagfladen, udføres enten som dør eller som drejevindue, sidehængt vindue, sidehængt lem eller skydevindue.
2.8 Trapper, trapperum, elevatorskakte og luftsluser

De trapper mv., som er flugtveje, vil ofte være de samme, som redningsberedskabet skal anvende som indtrængningsveje. Af dette hensyn bør bygningsdelene omkring trapperummet ofte have en brandmodstands-evne, som er længere end betinget af evakueringstiden.

Som nævnt i afsnit 2.5 er det hensigtsmæssigt at placere flugtvejstrapper i trapperum, som udgør en selvstændig brandsektion. Dette gælder også for elevatorer. Et trapperum vil ligeledes gøre trappen og dermed flugtvejen anvendeligt uanset vejrlig mv.

Døre fra en brandmæssig enhed, som ikke er flugtvejsgang, til trapperum eller elevatorskakte kan udføres som dør klasse EI₂₃₀-C [BD-dør 30]. I bygninger, hvor der er mindre end 22 m til gulv i øverste etage, kan elevatordøre til trapperum alternativt udføres som elevatordør EI-30 jf. DS/EN 81-58. I soverumsafsnit bør døren sikres med et ABDL-anlæg.

Hvis en elevator installeres med elevatordøre udført i henhold til DS/EN 81-58, bør elevatorskakten udføres med automatisk brandventilation.

I bygninger, hvor der er korte flugtveje og gode redningsmuligheder, kan der etableres udvendige trapper uden trapperum, som ikke er brandmæssigt adskilt fra bygningen. Korte flugtveje og gode redningsmuligheder er ofte til stede i bygninger med op til to etager.

Personer, der opholder sig i trapperummet, skal kunne komme direkte ud til terræn i det fri. Det er derfor vigtigt, at trapperummet indrettes, så der er adgang direkte til terræn i det fri. Udgang gennem et vindfang, der er adskilt fra andre rum i bygningen som et trapperum, er brandteknisk at sidestille med udgang direkte til det fri fra trapperum.

Etager med kælderfunktion har ofte en øget risiko for brand samtidig med, at der ofte er en stor brandbelastning, f.eks. på grund af oplag. I bygninger, hvor redningsberedskabet ikke kan nå alle redningsåbninger med håndstiger, dvs. når gulv i øverste etage er mere end 9,6 m over terræn, og hvor evakueringen derfor kan blive længerevarende, bør risikoen for brandspredning fra kælderetagen til trapperummet derfor mi-
Eksempelsamling om brandsikring af byggeri

48

Eksempelsamling om brandsikring af byggeri

nimeres. Dette kan f.eks. ske ved, at adgang fra trapperum til kælder enten sker via det fri eller gennem luftsluse.

Bygningsafsnit i anvendelseskategori 4, der vil være opdelt i mange selvstændige brandceller, og hvor risikoen for brandspredning derfor er lille, kan ofte udføres med trappeforbindelse mellem trapperum og kælder, hvis evakueringsmulighederne f.eks. er suppleret med åbne altaner til alle brandcellerne, hvorfra personer kan reddes ned ved hjælp af redningsberedskabets stiger.

Trapper i flugtveje skal udføres efter bestemmelserne i bygningsreglement 2015, kapitel 3.2.2. Spindel- og vinkeltrapper bør så vidt muligt ikke indgå i flugtvejen, da evakuering via denne type trapper vil være mere tidskrævende.

Afstanden mellem flugtvejstrapper bør – af hensyn til at sikre overskueligheden af flugtvejssystemet i en bygning – normalt ikke overstige 50 m.

I bygningsafsnit i anvendelseskategori 6, hvor der er behov for bårertransport, er det vigtigt ved udformningen af trappen at sikre, at bredden af trappen giver mulighed for dette.

I bygninger, hvor gulv i øverste etage ligger mere end 22 m over terræn, og i andre bygninger, hvor alle redningsåbninger ikke kan nås af redningsberedskabets stiger, er trapperne den eneste redningsmulighed for de personer, der opholder sig i bygningen. Trapperummet og trappen skal derfor udføres på en måde, der sikrer, at trappen i den tid, der kræves til evakuering og redningsmandskabets indsats, ikke påvirkes af branden. Dette kan f.eks. opnås ved, at trappen udføres som en sikkerhedstrappe. Når en bygning har en sikkerhedstrappe, opnås den bedst mulige sikkerhed ved, at alle etager i bygningen uanset højde i forhold til terræn har adgang til sikkerhedstrappen.

2.8.1 Udformning af sikkerhedstrappe og luftsluse

En sikkerhedstrapper er en trappe, hvor der er ringe sandsynlighed for svigt i tilfælde af brand. Man bør ved valg af typen af trappe være opmærksom på trappens funktion og dens formål.

Sikkerhedstrapper kan udfilmes, så der skabes adgang til trappen via en luftsluse eller ved at etablere tryksatte trapper.
Kendetegnende for en sikkerhedstrappe er, at trappen er etableret i et trapperum, der er udført som en selvstændig brandsektion, der kun indeholder materiale af klasse A2-s1,d0 [ubrændbart materiale] bortset fra håndlister, og hvortil der kun er adgang fra det fri og fra luftsluse.

En luftsluse til en sikkerhedstrappe skal sikre, at der ikke sker brand- eller røgspredning fra bygningen ind i trapperummet. Luftsluksen bør derfor udformes på en sådan måde, at røg og varme ventileres bort, inden det når trappen. Dette kan f.eks. opnås ved, at luftsluksen udføres som et rum, der har én side, som er helt åben til det fri i sin fulde bredde over værnet. Brandbelastningen i luftsluksen minimeres, så der ikke er noget, der kan bidrage til branden.

For at sikre, at røgen ikke ophobes i luftsluksen, bør luftsluksen ikke være for dyb. Normalt vil en luftsluse, der er udført med en dybde fra facade-linjen, der ikke overstiger 2 gange slusens bredde i facaden, og hvor ingen side i åbningen er mindre end 0,8 m, sikre, at røgen bliver udluftet. For at forhindre ophobning af røg i luftsluksen bør åbningen gå fra værnet og op til undersiden af loftet. En luftsluse til kælder kan på tilsvarende vis udføres, så den enten er åben til det fri eller gennem en lyskasse. Den fri åbning bør af hensyn til muligheden for røgudlufning have et areal på mindst 2,0 m², og ingen side i åbningen bør være mindre end 0,8 m. Åbningen kan afskærres eller dækkes med en rist, balustre, gitter mv. Arealet af riste mv. bør være så lille, at det ikke hindrer røgudluftningen. Dette vil f.eks. være tilfældet, hvis risten kun udgør 5 pct. af åbningarealet. En luftsluse bør kun indeholde materiale af klasse A2-s1,d0 [ubrændbart materiale] bortset fra håndlister.

Luftsluser kan udføres aflukket mod facaden med oplukkelige lemme eller lignende. Det er væsentligt, at lemmerne åbnes tidligt i brandforløbet fx ved automatisk detektering af røg i luftsluse og evt. forrum, og at lemmerne er funktionsdygtige under en brand.

Udføres lemme som vægmonterede brandventilationsåbninger jf. DS/EN 12101-2 Brandventilation - Del 2: Specifikation for naturlige røg- og varmeudugningsventilatorer, og i øvrigt med egenskaber som er beskrevet i afsnit 4.1.5, anses lemmerne som værende funktionsdygtige under en brand.

Egenskaberne, som er angivet i afsnit 4.1.5, er baseret på lemme placeret i et tag. Lemme i en luftsluse kan være placeret i en lodret position. Dermed vil de anbefalede værder, som er relateret til vindpåvirkning og snelast, ikke nødvendigvis være repræsentative. I så fald bør værdierne

Eksempelsamling om brandsikring af byggeri 49
(WL og SL) vælges, så de afspejler den reelle påvirkning af lemmen. For høje bygninger kan det fx være relevant at undersøge det konkrete vindtryk, der vil være på en facade, ligesom snelasten kan være minimal. Åbningsarealet for lemmene bør mindst modsvare det åbningsareal, der er beskrevet for den permanente luftsluse. Tilsvarende bør det sikres, at lemmene i åbenstående stilling ikke begrænser effektiviteten af åbningen fx som følge af, at lemmene reducerer luftflowet, så den forventede bortventilering af røg og varme via luftslusen reduceres.

For luftsluser, som er placeret i en facade, vil det være tilstrækkeligt at bestemme lemmenes effektivitet på grundlag af Cv0 svarende til de forhold, der vil være for den permanente åbning for en luftsluse.

Hvor bygningen i øvrigt er udført med automatisk brandalarmanlæg, kan åbningen af lemmene tilsluttet anlægget.

For yderligere at sikre, at der ikke sker brandspredning gennem døren mellem trapperum og luftsluse, er det vigtigt, at døren udføres med en passende brandmodstandsevne som f.eks. dør klasse EI2 30-C [BD-dør 30].

Selv om vindhastigheden kan være øget i højden, vil der normalt ikke være risiko for, at hastighedstrykket på en dør til en sluse i op til 45 meters højde vil overstige de maksimale 100 N, som er beskrevet i DS/EN 12101-6 Brandventilation - Del 6: Specifikation for trykdifferentialsystemer - Komponenter. Hvis hastighedstrykket på grund af slusens placering alligevel må forventes at overstige 100 N, kan døren eventuelt påmonteres særlige mekaniske døråbnere eller anden løsning som eksempelvis tofløjede døre med smalle dørblade eller vindskærme mv, som muliggør åbning af døren med en kraft på ikke over 100 N.

Det tryksatte trapperum betragtes normalt som et alternativ til sikkerhedstrappen, og hensynet med overtryksventileringen er at undgå røgfyldning fra en brand.

Konceptet af et tryksat trapperum er, at det ved en mekanisk løsning sikres, at selve trapperummet tryksættes med et overtryk således, at eventuelle roggasser holdes ude af trapperummet, selv om et antal døre mellem trapperummet og de enkelte etager åbnes.

og dens anvendelse, herunder også den valgte evakueringsstrategi og om trappen tillige er tænkt som en af redningsberedskabets indtrængningsmuligheder.

Redningsberedskabet vil i nogle tilfælde holde adgangsdøren til trappenrummet i stueetagen åben under indsats, ligesom der kan være behov for, at døren til etagen, hvor det brænder, kan være åben. Dette der bør der tages hensyn til ved dimensionering af det mekaniske system.

2.8.2 Flugtvejstrapper i bygninger, hvor gulv i øverste etage er mellem 22 og 45 m over terræn

Flugtvejstrapper er normalt den eneste evakueringsmulighed fra en bygning, hvor gulvet i øverste etage er mellem 22 og 45 m over terræn, da redning og indsats via redningsberedskabets kørbare stiger ikke er muligt i hele bygningens udstødningsområde. Derfor er det særlig vigtigt at sikre, at kravet om uhindrede flugtveje igangtages. Udobber at sikre, at flugtvejstrapperne er røgfri, skal trappernes bredde dimensioneres, så den passer til den valgte evakueringsstrategi. Udobber dimensionering af hensigtsmæssig bredde af trappevejsområdet, som er afhængig af den valgte flugtvejstrategi, er det vigtigt at sikre, at trappen til stadighed er tilstrækkelig belyst, således at det ønskede flow på trappen kan opretholdes.

I bygninger, hvor gulv i øverste etage er mellem 22 og 45 m over terræn, er der normalt to typer flugtvejstrapper, som kan anvendes:

- traditionelle flugtvejstrapper og
- sikkerhedstrapper.

Flugtvejstrapper, trapperum, udformning af sikkerhedstrapper og luftsluser er beskrevet i ovenstående afsnit.

For bygninger, hvor gulv i øverste etage er mellem 22 og 45 m over terræn, kan begge typer af trapper anvendes. Ved valg af traditionelle flugtvejstrapper bør man være opmærksom på, at denne type har større sandsynlighed for at blive spærret af røg end sikkerhedstrapper, og det kan derfor kræve yderligere tiltag. Anvendelse af traditionelle trapper bør dokumenteres ved en brandteknisk dimensionering, der beskriver, hvorledes sikkerheden tilgodeses for personer, der evakueres fra bygningen og for redningsberedskabets indsats.

Antallet af flugtvejstrapper fra en bygning eller et bygningsafsnit bør tilpasses antallet af personer, som den pågældende bygning eller det pågældende bygningsafsnit skal betjene. I bygninger, hvor gulv i øverste
etage er mellem 22 og 45 m over terræn, bør der fra et hvert bygningsafsnit være adgang til minimum 2 trapper. Undtaget herfra kan være bygninger, som alene består af et eller flere bygningsafsnit i anvendelseskategori 4. I så fald bør trappen altid være en sikkerhedstrappe.

Ved dimensionering af flugtvejstrapper bør man være opmærksom på, at flugtvejstrapperne også skal kunne rumme redningsberedskabet. Dermed kan der også være behov for, at redningsberedskabet skal kunne gå mod strømmen af personer, der evakuerer bygningen.

Hvis flugtvejstrapperne udformes, som det er beskrevet nedenfor, anses redningsberedskabets indsatsmuligheder normalt som værende tilfredsstillende:

- Der er højst 25 m til nærmeste trappe eller sikkert område.
- Der er højst 50 m mellem trapper eller trappe og sikkert område.
- Flugtvejstrappers bredde dimensioneres til mindst 10 mm per person.
- I forbindelse med byggeri med gulv i øverste etage mellem 22 m og 45 m over terræn bør bredden af trapper, der anvendes til både evakuering og redningsberedskabets indsats, dog være mindst 1,2 m.
- Antallet af flugtveje og udgange er afhængig af personbelastningen, som det er beskrevet i tabel 2.1.

2.8.3 **Særlige forhold vedrørende brandmandselevator i bygninger, hvor gulv i øverste etage er mellem 22 og 45 m over terræn**

I forbindelse med redningsberedskabets indsats i bygninger, hvor gulv i øverste etage er mere end 22 m over terræn, vil det ofte være nødvendigt, at redningsberedskabet kan komme op i bygningen via en brandmandselevator. Brandmandselevatoren kan bl.a. bringe redningsberedskabets mandskab og materiel sikkert op og ned igen. De elevatorer, som i brandsituationen skal virke som brandmandselevatorer, bør være placeret hensigtsmæssigt i forhold til, hvor redningsberedskabet ankommer til bygningen og have en størrelse, som er tilstrækkelig i forhold til den valgte strategi.

Antallet og størrelsen af brandmandselevatorer bør ses i sammenhæng med bygningens anvendelse og brug.

Redningsberedskabets indsats i bygninger, hvor gulv i øverste etage ligger mellem 22 og 45 m over terræn, kan f.eks. ske ved indtrængning til etagen under branden via trapperummet til den brandramte etage. Princippet er yderligere beskrevet i DS/EN 81-72 Sikkerhedsforskrifter.
for konstruktion og installation af elevatorer - Særlige anvendelser for person- og godselevatorer - Del 72: Brandmandselevatorer.

Som nævnt i afsnit 2.5, er det hensigtsmæssigt at placere flugtvejstrapperne i trapperum, som udgør en selvstændig brandsektion. Dette gælder også brandmandselevatorer og indsatsforrum.

Det bemærkes, at det er hensigtsmæssigt, at der er direkte forbindelse mellem sikkerhedstrappen og brandmandselevator, da redningsberedskabet udover at skulle kunne komme op i bygningen via brandmandselevator ligeledes kan forventes at skulle anvende sikkerhedstrapper ved deres indsats.

Nedenfor vises eksempler på udformninger af etageplaner med sikkerhedstrapper i forbindelse med brandmandselevator og henholdsvis med overtryksventileret trappe og sikkerhedstrappe med luftsluse.

Af figur 2.12 a og b samt figur 2.13 fremgår principper for, hvorledes etageplaner i bygninger i anvendelseskategori 4 kan udformes.

Figur 2.13. Princip for anvendelseskategori 4. Luftsluse udformes således, at redningsberedskabet kan gøre sig klar inden indsats til den brandramte etage, som typisk vil være etagen over etagen, hvor indsatsen forberedes.

Ved valg af ovenstående eksempler henledes opmærksomheden på de brandmæssige adskillelser samt klassifikation af døre.

<table>
<thead>
<tr>
<th>KLASSER FOR DØRE</th>
<th>DØR TIL SIKKERHEDS-TRAPPE</th>
<th>DØR TIL BRANDMANDELEVATOR</th>
<th>KLASSIFIKATION JF. EN 13501-2</th>
<th>KLASSIFIKATION JF. EN 81-58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod luftsluse</td>
<td>EI2 30-C</td>
<td>EI2 30-C</td>
<td>JF. EI 30a</td>
<td></td>
</tr>
<tr>
<td>Mod forrum der er egen brandsektion uden brandbelastning</td>
<td>EI2 30-C</td>
<td>EI2 30-C</td>
<td>JF. EI 30b</td>
<td></td>
</tr>
<tr>
<td>Mod forrum der er egen brandcelle uden brandbelastning</td>
<td>EI2 60-C</td>
<td>EI2 60-C</td>
<td>JF. EI 60b</td>
<td></td>
</tr>
</tbody>
</table>

a) Da elevatoren i fig. 2.12 a vender mod luftslusen, vil der ikke kunne opstå et drivtryk grundet branden, der gør, at der kommer væsentlig rogspredning til elevatoren. Der vil derfor ikke være behov for brandventilation af elevatorskakten.

b) Elevatoren i fig. 2.12 b sikres mod indtrængning af røg i elevatoren i den tid, som redningsberedskabet skal anvende elevatoren til redning. Dette kan ske ved tryksætning eller anden form for brandventilation af elevatoren.
Hvor brandmandselevatoren er placeret i trapperummet, kan den udføres uden brandmodstandsevne, såfremt den primært udføres af materialer udført som mindst klasse A2-s1,d0. Alternativt udføres brandmandselevatoren som egen brandsektion med døre som mindst EI2 30-C, eller EI 30.

Døre mellem luftsluse og forrum uden brandbelastning kan udføres uden brandmodstandsevne. Hvor døren fra luftslusen fører ind i en del af bygningen, hvori der er brandbelastning, udføres døren som EI230-C. Døre til luftsluser må ikke kunne aflåses.

Figur 2.14. Princip udformning af trappekerne i anvendelseskategori 1, 2 og 5.
3 Konstruktive forhold

3.1 Klassifikation af byggevarer og bygningsdele
I følge bygningsreglement 2015, kapitel 5.3, stk. 1 skal byggevarer og bygningsdele udføres, så personer, som opholder sig i bygningen, kan bringe sig i sikkerhed på terræn i det fri eller et sikkert sted i bygningen, og så redningsberedskabet har mulighed for redning og slukningsarbejde.

For at kunne vurdere de brandtekniske egenskaber for byggevarer og bygningsdele klassificeres de, som beskrevet i afsnit 1.4 i henhold til et klassifikationssystem. Nedenfor er beskrevet, hvordan klassifikationssystemerne kan anvendes.

3.1.1 Byggevarers og bygningsdeles reaktion på brand
Efter det europæiske klassifikationssystem kan byggevarers og bygningsdeles (eksklusiv gulvbelægningers og tagdækningers) reaktion på brand inddeles i følgende primærklasser:

- A1 byggevarer, som ikke medvirker til brand, kan ikke kombineres med tillægsklasser
- A2 byggevarer, hvis medvirken til brand er yderst begrænset, skal kombineres med tillægsklasse for røg (s) og brændende dråber (d)
- B byggevarer, hvis medvirken til brand er meget begrænset, skal kombineres med tillægsklasse for røg (s) og brændende dråber (d)
- C byggevarer, som i begrænset udstrekning medvirker til brand, skal kombineres med tillægsklasse for røg (s) og brændende dråber (d)
- D byggevarer, hvis medvirken til brand kan accepteres, skal kombineres med tillægsklasse for røg (s) og brændende dråber (d)
- E byggevarer, som i relativt stor udstrekning medvirker til brand, kan enten stå alene eller kombineres med tillægsklasse d2 for brændende dråber
- F betyder, at det ikke er dokumenteret, at produktet lever op til noget klassifikationskrav og kan derfor ikke kombineres med tillægsklasser.

Tillægsklasserne for røg og brændende dråber er:
- s1 meget begrænset mængde af røgdudvikling
• s2 begrænset mængde af røgudvikling
• s3 intet krav til mængde af røgudvikling
• d0 ingen brændende dråber eller partikler
• d1 brændende dråber eller partikler i begrænset mængde
• d2 intet krav til mængde af brændende dråber eller partikler.

Eksempler på klassebetegnelse for byggevarer og bygningsdele (eksklusiv gulvbelægninger og tagdækninger) er:
• A2-s1,d0
• B-s1,d0
• D-s2,d2.

Efter det hidtidige danske system klassificeres byggevarers og bygningsdeles egenskaber med hensyn til reaktion på brand i klasserne:
• Ubrændbart materiale
• Klasse A materiale
• Klasse B materiale
• Materiale som ikke kan klassificeres.

Gulvbelægningers reaktion på brand inddeles efter det europæiske system i følgende primærklasser:
• A1\textsubscript{fl}
• A2\textsubscript{fl}
• B\textsubscript{fl}
• C\textsubscript{fl}
• D\textsubscript{fl}
• E\textsubscript{fl}
• F\textsubscript{fl}

Klasserne A\textsubscript{1P}, E\textsubscript{P} og F\textsubscript{P} kombineres ikke med tillægsklasse, hvor imod klasserne A\textsubscript{2P}, B\textsubscript{P}, C\textsubscript{P} og D\textsubscript{P} altid kombineres med en tillægsklasse for røg (s), som er:
• s1 begrænset mængde af røgudvikling
• s2 intet krav til mængde af røgudvikling.

Eksempler på klassebetegnelse for gulvbelægninger er:
• A2\textsubscript{fl}-s1
• D\textsubscript{fl}-s1.

Efter det hidtidige danske system klassificeres gulvbelægninger i klasserne:
• Ubrændbar gulvbelægning
• Klasse G gulvbelægning
• Gulvbelægning som ikke kan klassificeres.
Tagdækningers reaktion på brand inddeles efter det europæiske system i følgende klasser:

- \(B_{\text{ROOF}}(t1) \)
- \(F_{\text{ROOF}}(t1) \)
- \(B_{\text{ROOF}}(t2) \)
- \(F_{\text{ROOF}}(t2) \)
- \(B_{\text{ROOF}}(t3) \)
- \(C_{\text{ROOF}}(t3) \)
- \(D_{\text{ROOF}}(t3) \)
- \(F_{\text{ROOF}}(t3) \)
- \(B_{\text{ROOF}}(t4) \)
- \(C_{\text{ROOF}}(t4) \)
- \(D_{\text{ROOF}}(t4) \)
- \(E_{\text{ROOF}}(t4) \)
- \(F_{\text{ROOF}}(t4) \)

Efter det hidtidige danske system klassificeres tagdækninger i klaserne:

- Klasse T tagdækning
- Tagdækning som ikke kan klassificeres.

3.1.2 Byggevarers og bygningsdeles brandmodstandsevne

En bygningsdels brandmodstandsevne er det tidsrum, i hvilket bygningsdelen under brandpåvirkningen kan bære lasten og kan opfylde kravene relateret til den adskillende funktion (integritet og isolation).

De bygningsdele, som bærer eller fastholder en anden bygningsdel (bærende og/eller ikke-bærende og/eller adskillende), skal mindst have samme brandmodstandsevne (for så vidt angår den bærende funktion), som der kræves for den bygningsdel, der bæres eller fastholdes.

Byggevarers og bygningsdeles brandmodstandsevne beskrives i det europæiske system ud fra følgende ydeevnekriterier:

- \(R \) for bæreevne
- \(E \) for integritet
- \(I \) for isolation.

Det registrerede tidsrum for opretholdelse af ydeevne ved standardiseret brandprøvning angives i minutter, f.eks. 30, 60, 120.
Klasserne inddeles som beskrevet nedenfor.

Bærende bygningsdele:
- REI-tid, som er det tidsrum, hvor alle tre kriterier, bæreevne, integritet og isolation, er opfyldt
- RE-tid, som er det tidsrum, hvor de to kriterier, bæreevne og integritet, er opfyldt
- R-tid, som er det tidsrum, hvor kriteriet bæreevne er opfyldt.

Ikke-bærende bygningsdele:
- EI-tid, som er det tidsrum, hvor de to kriterier, integritet og isolation, er opfyldt
- E-tid, som er det tidsrum, hvor kriteriet integritet er opfyldt.

Klassifikationen kan udvides med:
- W, når isoleringsevnen er kontrolleret på grundlag af den udsendte varmestråling
- M, når der tages særligt hensyn til mekaniske påvirkninger
- S for bygningsdele med særlig begrænsning af røggennemtrængning.

Eksempler på klassebetegnelse i det europæiske system:
- R 30
- EI 30
- REI 60.

Efter det hidtidige danske system beskrives brandmodstandsevne for bygningsdele med kasserne:
- BS for bærende og ikke-bærende samt adskillende bygningsdele af ubrændbare materialer
- BD for bærende og ikke-bærende samt adskillende bygningsdele
- F forflammestoppende bygningsdele.

Døres brandmodstandsevne beskrives i det europæiske system i følgende kasser:
- EI₂-tid, som er det tidsrum, hvor de to kriterier, integritet og isolation, er opfyldt
- E-tid, som er det tidsrum, hvor kriteriet integritet er opfyldt
- S₂ angiver, at døren er røgstoppende over for kold røg
- C tilføjes, hvis døren er selv lukkende.

Efter det hidtidige danske system beskrives brandmodstandsevne for døre med klasserne:

- BS for adskillende døre af ubrændbare materialer
- BD for adskillende døre
- F for flammestoppende døre
- Røgtætte døre.

For beklædningers brandbeskyttelsesevne anvendes i det europæiske system følgende klasser:

- K_1 10
- K_2 30
- K_2 60.

Efter det hidtidige danske system beskrives beklædninger og brandbeskyttelsessystemer i klasserne:

- Klasse 1 beklædning
- Klasse 2 beklædning
- 30 minutters brandbeskyttelsessystem
- 60 minutters brandbeskyttelsessystem.

3.1.3 Kombination af brandmodstandsevne og brandbeskyttelsesevne med reaktion på brand

Klasserne for brandmodstandsevne og brandbeskyttelsesevne kan kombineres med klasserne for byggevarers og bygningsdeles (eksklusive gulvbelægningers og tagdækningers) reaktion på brand.

For BS-bygningsdele skal de europæiske klasser for brandmodstandsevne kombineres med reaktion på brand klassen A2-s1,d0. Tilsvarende gælder, at de europæiske klasser for brandbeskyttelsesevne skal kombineres med reaktion på brand, f.eks. beklædning klasse K_1 10 D-s2,d2 for en klasse 2 beklædning.

Tætningslister/fugemasser kan anvendes i samlinger, false og anslag, selv om de ikke opfylder reaktion på brand kravene for produkterne i den bygningsdel, hvori de indgår, under forudsætning af, at de pågældende tætningslister/fugemasser ved prøvningen for brandmodstandsevne var Monteret som forudsat og ikke medførte svigt af integritet inden for bygningsdelens klassifikationstid. Det er altså altid vigtigt at sikre at leverandørens monteringsanvisninger følges.

3.2 Isoleringsmaterialer i bygningsdele

Det fremgår af bygningsreglement 2015, kapitel 5.3, stk. 1, at bygnings-
dele skal udføres, så personer, som opholder sig i bygningen, kan bringe sig i sikkerhed på terræn i det fri eller et sikkert sted i bygningen, og så redningsberedskabet har mulighed for redning og slukningsarbejde.

Når der anvendes isoleringsmaterialer, er det vigtigt, at de anvendes på en sådan måde, at det ikke medfører en øget brandrisiko. Ved et isoleringsmateriale forstås i denne sammenhæng ethvert materiale, der har en densitet, som er mindre end 300 kg/m³. Dette afsnit omfatter ikke andre plastbaserede byggevarer end de egentlige isoleringsmaterialer, f.eks. ikke eldåser og -rør, faldstammer, ventilationsdele, kabelisolering, montageskum og lignende.

For industri- og lagerbygninger i én etage henvises til afsnit 9.

På denne baggrund vil det normalt være i overensstemmelse med bestemmelsen i bygningsreglement 2015, kapitel 5.3, stk. 1, at:

- Isoleringsmaterialer, der opfylder kravene til materiale klasse A2-s1,d0 [ubrændbart materiale] kan anvendes uden begrænsninger.

- Isoleringsmaterialer, der opfylder kravene til materiale klasse B-s1, d0 [klasse A materiale] anvendes uden begrænsninger for bygninger hvor gulv i øverste etage er mindre end 22 m over terræn.

- Isoleringsmaterialer, der opfylder kravene til materiale klasse D-s2, d2 [klasse B materiale], anvendes med de begrænsninger, der i den konkrete sammenhæng gælder for alle andre materialer.

- Isoleringsmaterialer, der ikke mindst er materiale klasse D-s2,d2 [klasse B materiale] kan
 - anvendes ovenpå etageadskillelser, som er mindst bygningsdel klasse REI 60 A2-s1,d0 [BS-bygningsdel 60]

![Figur 3.1. Etageadskillelse.](image-url)

- anvendes i væge, hvis isoleringsmaterialet på begge sider af en lodret bygningsdel er afdækket med mindst bygningsdel klasse REI/EI 30 A2-s1,d0 [BS-bygningsdel 30].
Figur 3.2. Lodret bygningsdel.

- anvendes i tagkonstruktioner, såfremt den underliggende del af tagkonstruktionen er mindst bygningsdel klasse REI/EI 30 [BD-bygningsdel 30]

Figur 3.3. Tagkonstruktion.

- anvendes i terrændæk og i krybekælderæk

- eller anvendes i bygninger, hvor gulv i øverste etage er højst 9,6 m over terræn, når

 - isoleringsmaterialet er afdækket med mindst beklædning klasse K_1 10 B-s1,d0 [klasse 1 beklædning] langs begge sider af en lodret bygningsdel og langs undersiden af en vandret eller skråtstillet bygningsdel, såfremt der ikke er hulrum mellem isoleringsmaterialet og beklædningen.
Figur 3.4. Lodrette og vandrette bygningsdele, hvor gulv i øverste etage er højst 9,6 m over terræn.

eller

Figur 3.5. Lodrette og vandrette bygningsdele.

Isoleringsmaterialer, der ikke mindst er materiale klasse B-s1,d0 [klasse A materiale], bør ikke anvendes i bygninger, hvor højde til gulv i øverste etage er mere end 5,1 m over terræn, og som har bærende konstruktions, der ikke er udført af mindst materiale klasse A2-s1,d0 [ubrændbart materiale]. Endvidere bør disse isoleringsmaterialer ikke anvendes uden på bygninger med tagdækning, som ikke er mindst tagdækning klasse $B_{\text{ROOF}}(t2)$ [klasse T tagdækning].
Til udvendig isolering af fritliggende enfamiliehuse og helt eller delvist sammenbyggede enfamiliehuse i højst 2 etager med ydervægge af letbeton, beton eller murværk er det tillige muligt at anvende isoleringsmateriale, der ikke mindst er materiale klasse D-s2,d2 [klasse B materiale], afsluttet med et pudssystem eller tilsvarende udvendige overfladelag, som for eksempel natursten, keramik, mursten, beton og letbeton under forudsætning af, at overfladelag og isolering prøvet som et samlet facadesystem kan dokumenteres at overholde følgende kriterier ved prøvning efter den svenske brandprøvningsmetode SP FIRE 105:

1. Der må ikke falde store dele ned, fx store pudsstykker, plader eller lignende, som kan udgøre en fare for personer under evakuering eller for redningsmandskabet,
2. Brandspredning på overfladen samt i væggen skal begrænse til underkant vinduet 2 etager over brandrummet, og der må ikke opstå flammer udvendigt, som kan give anledning til antændelse af tagudhæng beliggende over vinduet 2 etager over brandrummet. Som ligeværdigt alternativ gælder, at røggastemperaturen umiddelbart under tagudhænget ikke må overstige 500 °C i en sammenhængende periode i mere end 2 minutter eller 450 °C i mere end 10 minutter. Kriteriet er et udtryk for, hvor meget det samlede facadesystem bidrager til brandens udvikling.

Ved brug af isoleringsmateriale, der ikke mindst er materiale klasse D-s2,d2 [klasse B materiale], er det generelt vigtigt at være opmærksom på, at isoleringsmaterialet afdækkes langs alle bygningsdelenes flader, så isoleringsmaterialet ingen steder er blotlagt. Det er særligt vigtigt langs bygningsdelenes kanter og langs åbninger i bygningsdelen, for eksempel langs sokkel og langs åbninger til vinduer og døre, men også ved udtag til ventilation mv.

Facadesystemet skal monteres, som beskrevet i monteringsanvisningen fra leverandøren.

Figur 3.6 viser eksempler på områder, hvor det bl.a. er vigtigt, at der ved monteringen sker en forsvarlig inddækning.

For sammenbyggede enfamiliehuse gælder, at udvendig isolering med isoleringsmateriale, som ikke mindst er materiale klasse B-s1,d0 [klasse A materiale] bør afbrydes med brandstop for hvert enfamiliehus. Brandstoppet kan udføres med fastholdt isoleringsmateriale, som mindst er klasse A2-s1,d0 [ubrændbart materiale]. Brandstoppet bør udføres, så det sikre, at der ikke sker brandspredning fra en bolig til den næste inden for en acceptabel tid. Det vil ofte være tilstrækkeligt, at brandstoppet udføres i en bredde svarende til den adskillige vægs bredde, Se figur 3.6.
Eksempler på områder, hvor det er vigtigt at sikre, at afdækningen af isoleringsmaterialet, som ikke mindst er materiale klasse D-s2, d2 [klasse B materiale], er korrekt udført. Nedenfor er vist detaljer af de relevante områder.

1–3.

1. Vinduesfals, bund
 - Overfladelag
 - Isolering
 - Vindue

2. Dør- og vinduesfals, top
 - Overfladelag
 - Isolering
 - Vindue

3. Dør- og vinduesfals, side
 - Overfladelag
 - Isolering
 - Dør/vindue

4–5.

4. Udadgående hjørne
 - Overfladelag
 - Isolering

5. Indadgående hjørne
 - Overfladelag
 - Isolering
6–7.

6. Sokkel og facade

7. Tagfod

8–9.

8. Røgennemføring

9. Boligadskillelse

Figur 3.6. Eksempler på inddækning af isoleringsmateriale, som ikke mindst er materiale klasse D-s2, d2 [klasse B materiale].

Ved ventilerede tagrum er det hensigtsmæssigt at sikre en forsvarlig inddækning, jf. figur 3.7.

Figur 3.7. Eksempler på inddækning af isoleringsmateriale, som ikke mindst er materiale klasse D-s2, d2 [klasse B materiale], ved tagudhæng.

Ved montage af isoleringsmateriale, der ikke mindst er materiale klasse D-s2,d2 [klasse B materiale] er det vigtigt, at der tages hensyn til risikoen for antændelse af isoleringsmateriale, som endnu ikke er inddækket. Det kan derfor være hensigtsmæssigt, at isoleringsmaterialet løbende afdækkes under byggeprocessen og at evt. antændelseskilder holdes under kontrol.

3.3 Bærende bygningsdele
Som det fremgår af bygningsreglement 2015, kapitel 5.3, stk. 1, skal bærende bygningsdele udføres, så personer, som opholder sig i bygningen, kan bringe sig i sikkerhed på terræn eller et sikkert sted i bygningen, og så redningsberedskabet har mulighed for rednings- og slukningsarbejde.

Med hensyn til:
• Enfamiliehuse, helt eller delvist sammenbyggede enfamilie-huse, sommerhuse og campinghytter samt dertil hørende små-bygninger,
• staldbyggeri, og
• industri- og lagerbygninger i én etage,

henvises der til henholdsvis afsnit 7, 8 og 9.

Bygningsreglement 2015, kap. 5.3 stk. 4, omhandler bygninger, hvor gulv i øverste etage er mere end 22 m over terræn. Her anføres, at der ved dimensionering af de bærende konstruktioner skal tages særligt hensyn til tiden for evakuering af bygningen, redningsberedskabets indsatstid og adgang til etagerne samt brandbelastning og lignende.

Eksempler på, hvordan bygningsreglementets funktionskrav for traditionelle bygninger med gulv i øverste etage op til 22 m over terræn kan opfyldes, der beskrevet i afsnit 3. Heraf fremgår, at funktionskravet for disse bygninger f.eks. kan opfyldes, ved at bygningens bærende bygningsdele udføres som klasse R120 A2-s1,d0 (BS-bygningsdel 120). For bygninger med gulv i øverste etage mellem 22 og 45 m kan de bærende bygningsdele tillige udføres som klasse R120 A2-s1,d0 (BS-bygningsdel 120).
For at undgå pludselig svigt i konstruktionerne i en bygning, er det vigtigt, at konstruktionerne udføres på en sådan måde, at de ikke understøttes eller stabiliseres af andre konstruktioner, der har en utilstrækkelig brandteknisk klassifikation/brandmodstandsevne. En lavere del af en bygning kan udføres med en mindre brandmodstandsevne end resten af bygningen, hvis den højere del af bygningens bæreevne og stabilitet er uafhængig af den lavere del.

Bærende konstruktioner i traditionelt byggeri kan udføres med en brandmodstandsevne som beskrevet her i Eksempelsamling om brandsikring af byggeri. Mht. dimensionering af bærende konstruktioners bæreevne under brand henvises til Eurocodes med tilhørende danske annekser, jf. bygningsreglement 2015, kap. 4.2.

Bærende bygningsdele kan bl.a. omfatte vægge, søjler, bjælker, etageadskillelser, altangange og altaner samt trapper.

Det er vigtigt, at det ved dimensionering af de bærende konstruktioner dokumenteres, at eventuelle brandmæssige enheder i bygningen forbli- ver intakte i den nødvendige periode. Der kan altså være tilfælde, hvor det er stabiliteten af de brandmæssige adskillelser og ikke bæreevnen, som er dimensionsgivende. For brandceller og brandsektioner er dette f.eks. normalt 60 minutter.

De dele af en tagkonstruktion, som kun skal bære sig selv og naturlasten kan udføres uden brandmodstandsevne – medmindre et svigt i disse dele af tagkonstruktionen har indflydelse på bygningens afstivende system overfor vandrette laster eller på andre bærende eller ikke-bærende bygningsdeles brandmodstandsevne. Det betyder for eksempel, at spærkonstruktioner kun er en bærende bygningsdel, hvis der er risiko for progressivt kollaps, eller hvis spærkonstruktionen har indflydelse på andre bærende bygningsdeles stabilitet.

De i tabel 3.1 angivne eksempler på brandmodstandsevne for de bærende bygningsdele i en bygnings øverste etage omfatter derfor de bygningsdele (vægge, bjælker og søjler), som bærer de ovenover bygningens øverste etage beliggende dele af tagkonstruktionen, som kun skal bære sig selv og naturlasten.

I tabel 3.1 – 3.3 er givet en række eksempler på, hvordan bærende bygningsdele – adskillende og ikke-adskillende – i bygninger med højde til gulv i øverste etage op til 22 m over terræn kan udføres:
Tabel 3.1. Eksempler på udførelse af bærende bygningsdele.

<table>
<thead>
<tr>
<th>BÆRENDE BYGNINGSDELE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bygningsdele i bygningers øverste etage</td>
</tr>
<tr>
<td>Anvendelseskategori 1-5</td>
</tr>
<tr>
<td>Anvendelseskategori 6</td>
</tr>
<tr>
<td>samt bygninger i flere etager, hvor højden til gulv i øverste etage er mellem 12 m</td>
</tr>
<tr>
<td>og 22 m over terræn</td>
</tr>
</tbody>
</table>

| **Etageadskillelse over kælder samt de bygningsdele, der bærer denne etageadskillelse, generelle eksempler** |
Anvendelseskategori 1-6	Bygningsdel klasse R 60 A2-s1,d0 [BS-bygningsdel 60]
Bygninger i flere etager, hvor højden til gulv i øverste etage er mellem 12 m	Bygningsdel klasse R 120 A2-s1,d0 [BS-bygningsdel 120]
og 22 m over terræn	

| **Bygninger med 1 etage (bortset fra etageadskillelse over kælder samt de bygningsdele, der bærer denne etageadskillelse, som er omfattet af ovenstående generelle eksempler)** |
Anvendelseskategori 1 - 5	Bygningsdel klasse R 30 [BD-bygningsdel 30], hvis bygningen er op til 1000 m²
	Bygningsdel klasse R 60 [BD-bygningsdel 60], hvis bygningen er mere end 1000 m²
	Bygningsdel klasse R 30 [BD-bygningsdel 30]

I en bygning med let tagkonstruktion og med jævnt fordelt brandventilation i tagfladen kan de bærende bygningsdele i bygningen udføres uden krav til brandmodstandsevne, hvis bygningen er under 1.000 m², og i bygninger over 1.000 m² kan de bærende konstruktioner udføres

- som bygningsdel klasse R 30 [BD-bygningsdel 30], hvis bygningseflelen bærer mere end 200 m² tag,
- som bygningsdel klasse R 60 [BD-bygningsdel 60], hvis bygningseflelen bærer mere end 600 m² tag,
- uden krav til brandmodstandsevnen for øvrige bygningsdele.

Udformes brandventilationsåbningerne som angivet i DS/EN 12101-2, Brandventilation vil et frit aerodynamisk areal på 2 % være tilstrækkeligt for bygninger med et etageareal på højest 500 m² og 10 m² for bygninger med et etageareal på mere end 500 m² eller derover, se 4.1.5 om røgzoner og placering af brandventilationsåbninger.
Tabel 3.1. Eksempler på udførelse af bærende bygningsdele (fortsat).

BÆRENDE BYGNINGSDELE (FORTSAT)

<table>
<thead>
<tr>
<th>Anvendelseskategori 1-5 (fortsat)</th>
<th>For nærmere specifikation af brandventilationsanlægget henvises til afsnit 4.1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anvendelseskategori 6</td>
<td>Bygningsdel klasse R 60 [BD-bygningsdel 60]</td>
</tr>
</tbody>
</table>

Bygninger i flere etager, hvor højde til gulv i øverste etage er højst 5,1 m over terræn (bortset fra bygningsdele i bygningens øverste etage og etageadskillelse over kælder samt de bygningsdele der bærer denne etageadskillelse, som er omfattet af ovenstående generelle eksempler)

<table>
<thead>
<tr>
<th>Anvendelseskategori 1-6</th>
<th>Bygningsdel klasse R 60 [BD-bygningsdel 60]</th>
</tr>
</thead>
</table>

Bygninger i flere etager, hvor højde til gulv i øverste etage er mellem 5,1 m og 9,6 m over terræn (bortset fra bygningsdele i bygningens øverste etage og etageadskillelse over kælder samt de bygningsdele der bærer denne etageadskillelse, som er omfattet af ovenstående generelle eksempler).

<table>
<thead>
<tr>
<th>Anvendelseskategori 1-6</th>
<th>Bygningsdel klasse R 60 A2-s1,d0 [BS-bygningsdel 60]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eller Bygningsdel klasse R 60 D-s2,d2 [BD-bygningsdel 60] [klasse B materiale], når bygningen er udført enten med automatisk sprinkleranlæg, eller bygningsdelene er udført med beklædning klasse K, 60 A2-s1,d0 [60 minutters brandbeskyttelsessystem]</td>
</tr>
</tbody>
</table>

Eksempler:

- **Højst 5,1 m:**
 - R 30
 - R 60
 - R 60 A2-s1,d0

- **Højst 9,6 m:**
 - R 60 A2-s1,d0
 - Eller R 60 D-s2,d2 når bygningen er udført enten med et automatisk sprinkleranlæg, eller bygningsdelene er udført med beklædning klasse K, 60 A2-s1,d0, dog ikke kælder.
Tab. 3.1. Eksempler på udførelse af bærende bygningsdele (fortsat).

<table>
<thead>
<tr>
<th>Bygninger i flere etager, hvor højde til gulv i øverste etage er mellem 9,6 m og 12 m over terræn (bortset fra bygningsdele i bygningens øverste etage og etageadskillelse over kælder samt de bygningsdele der bærer denne etageadskillelse, som er omfattet af ovenstående generelle eksempler)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anvendelseskategori 1-6</td>
</tr>
<tr>
<td>Højst 12 m</td>
</tr>
<tr>
<td>R 30</td>
</tr>
<tr>
<td>R 60 A2-s1,d0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bygninger i flere etager, hvor højde til gulv i øverste etage er mellem 12 m og 22 m over terræn (bortset fra bygningsdele i bygningens øverste etage og etageadskillelse over kælder samt de bygningsdele der bærer denne etageadskillelse, som er omfattet af ovenstående generelle eksempler).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anvendelseskategori 1-6</td>
</tr>
<tr>
<td>Højst 22 m</td>
</tr>
<tr>
<td>R 60</td>
</tr>
<tr>
<td>R 120 A2-s1,d0</td>
</tr>
</tbody>
</table>

*) De bærende konstruktioner i en bygning anses at have en tilstrækkelig brandmodstandsevne, hvis det dokumenteres, at bygningen bevarer sin stabilitet ved standardbrandpåvirkning i 120 minutter. Det betyder bl.a., at nøgleelementer og deres fastholdelser i knudepunktsfiguren har en brandmodstandsevne på mindst 120 minutter. Der kan være bygningsdele, der har en brandmodstandsevne på mindre end 120 minutter, hvis det dokumenteres f.eks. ved brug af Eurocodes mv., at bygningen bevarer sin stabilitet uanset, at der måtte ske kollaps og evt. nedfald af delelementer af konstruktionen.
Nøgleelementer er alle elementer, hvis funktion er afgørende for bygningens overordnede stabilitet. Det er ikke tilstrækkeligt, at disse elementer i sig selv kan modstå en 120 minutters standardbrandpåvirkning, det kræves også, at de bevarer deres bærende funktion selv om sekundære konstruktioner svigter på et tidligere tidspunkt.

Som eksempel herpå kan nævnes, at en indvendig lodret bærende væg, der kan modstå en standard brand-påvirkning i 120 minutter normalt vil kunne bevare sin bærende funktion, selv om et dæk på én side af vægen svigter. For lodret bærende ydervægge og søjler vil det derimod normalt kræve særlige forholdsregler at opretholde den bærende funktion hvis en dækskive svigter, eksempelvis ved at indlægge særlige brandsikrede elementer i dækskiverne eller ved at udforme søjler og vægge, så de kan fungere som to etager høje bærende elementer mellem de tilbageværende intakte dækskiver.

Det må normalt forventes, at naboområder til det sted i bygningen, hvor branden er opstået, prioriteres først under evakueringen. Dette er baggrunden for at kunne acceptere, at de brandmæssige adskillelser lokalt svigter efter 60 minutter, så længe dette ikke medfører mere omfattende skader på bygningens hovedkonstruktion.

Som alternativ til håndtering af nøgleelementer kan i denne sammenhæng nævnes muligheden for generelt at sikre tilstrækkelig sammenhæng i bygningen til, at stabiliteten kan opretholdes gennem en omfordeling af kraftforløbene i den overordnede bærende konstruktion, selv om én eller flere bærende bygningsdele i den brandpåvirkede del af bygningen svigter tidligere end 120 minutter efter brandens opståen.
<table>
<thead>
<tr>
<th>ALTANER OG ALTANGANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generelt</td>
</tr>
<tr>
<td>Anvendelseskategori 1-6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altaner, der kun betjener én brandcelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anvendelseskategori 1-6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>a. Altanen fastgøres til bygningsdele, som er bygningsdel klasse R 60 A2-s1,d0 [BS-bygningsdel 60] med materialer, som er materiale klasse A2-s1,d0 [ubrændbart materiale], og som har et smeltepunkt, der er højere end 850 °C</td>
</tr>
<tr>
<td>b. Bærende altankonstruktioner udføres af materialer, som er materiale klasse A2-s1,d0 [ubrændbart materiale], og stabiliteten af den enkelte altan bevares, hvis der ved brand sker svigt i konstruktionen i en vilkårlig af de øvrige altaner</td>
</tr>
<tr>
<td>c. Rækværk og altanplade udføres som let konstruktion</td>
</tr>
</tbody>
</table>

![Diagram of an example of a roof and entrance with a balcony and an example of a roof construction.](image-url)
Tabel 3.3. Eksempler på udførelse af trappers bærende konstruktioner.

<table>
<thead>
<tr>
<th>TRAPPER*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I bygninger, hvor højde til gulv i øverste etage er højst 5,1 m over terræn</td>
<td>Materiale klasse D-s2,d2 [klasse B materiale]**</td>
</tr>
<tr>
<td>Anvendelseskategori 1-6</td>
<td></td>
</tr>
<tr>
<td>I bygninger, hvor højde til gulv i øverste etage er mellem 5,1 m og 9,6 m over terræn</td>
<td>Bygningsdel klasse R 30 A2-s1,d0 [BS-bygningsdel 30] eller Bygningsdel klasse R 30 D-s2,d2 [BD-bygningsdel 30] [klasse B materiale], hvis</td>
</tr>
<tr>
<td>Anvendelseskategori 1-6</td>
<td>• trappen udføres med automatisk sprinkleranlæg og på undersiden har beklædning klasse K, 10 B-s1,d0 [klasse 1 beklædning] eller • trappen på undersiden og langs siderne er udført med beklædning klasse K, 30 A2-s1,d0 [30 minutters brandbeskyttelsessystem]</td>
</tr>
<tr>
<td>I bygninger, hvor højde til gulv i øverste etage er mere end 9,6 m over terræn</td>
<td>Bygningsdel klasse R 30 A2-s1,d0 [BS-bygningsdel 30]</td>
</tr>
<tr>
<td>Anvendelseskategori 1-6</td>
<td></td>
</tr>
</tbody>
</table>

*) Trappens bærende konstruktion omfatter vanger, trin og reposer.
**) Trappe udført af materiale klasse D-s2,d2 [klasse B materiale] uden krav til trappens brandmodstandsevne.

Glasydervægge, ikke-bærende vægelementer, keramiske ydervægsbeklædninger og lignende, der i tilfælde af brand kan udgøre en fare, hvis fastholdelsessystemet sviger, skal fastholdes brandmæssigt forsvarligt.

3.4 Sammenbygning af bygningsdele

Som det fremgår af Bygningsreglement 2015, kapitel 5.3, stk. 2, skal bygningsdele sammenbygges, så den samlede konstruktion i brandmæssig henseende ikke er ringere, end hvad der kræves for de enkelte bygningsdele i konstruktionen.
Figur 3.8. Samlinger skal have samme brandmodstandsevne som bygningsdelene.

Af Bygningsreglement 2015, kapitel 5.3, stk. 3, fremgår endvidere, at bygninger skal udføres, så en brand ikke kan sprede sig fra en brandcelle til et hulrum, som passerer én eller flere brandadskillende bygningsdele.

Det kan derfor bl.a. være nødvendigt at afbryde hulrum med brandstop. Brandstop er en konstruktiv detalje, der hindrer, at en brand kan sprede sig via hulrum til en anden brandcelle eller til et hulrum ud for en anden brandcelle. Et brandstop kan f.eks. udføres af isoleringsmateriale, der opfylder kravene til materiale klasse A2-s1,d0 [ubrændbart materiale], træ eller træbaserede plader. Brandstop bør normalt placeres i hulrum ved samtlige afgrænsninger mellem brandceller. Det er desuden vigtigt at tage højde for, at brandstopene ikke svækkes i bygningens levetid.

4 Brandtekniske installationer

Det fremgår derfor af Bygningsreglement 2015, kapitel 5.4, at det for forskellige anvendelseskategorier er nødvendigt at supplere den passive brandsikring med active brandsikringstiltag (herefter omtalt som brandtekniske installationer).

Brandtekniske installationer skal udføres, så de er pålidelige samt kan kontrolleres og vedligeholdes i hele bygningens levetid.

Systemintegrationstesten bør ligeledes indgå som en fast del af de kontrol- og vedligeholdelsesforanstaltninger, der skal sikre, at brandsikkerheden opretholdes i hele bygningens levetid.

Den ønskede integration af de brandtekniske installationer bør beskreves nøje i brandstrategirapporten f.eks. i form af et diagram eller en brandmatrix. Det er i den forbindelse væsentligt også at overveje, i hvilken rækkefølge de brandtekniske anlæg skal aktiveres.

Det er vigtigt, at de brandtekniske installationer, der anvendes i en bygning, giver et tilfredsstillende sikkerhedsniveau i hele bygningens levetid. Dette opnås ved, at installationerne projekteres og installeres under hensyntagen til den konkrete anvendelse.
Ved valg af brandtekniske installationer i bygninger er det vigtigt, at der vælges et anlæg, som har den ønskede virkning. Derfor er det især også vigtigt, at man overvejer, hvad formålet med det enkelte anlæg er. Hvis det f.eks. er formålet at detektere branden på et relativt tidligt tidspunkt, bør der anvendes røgalarmer og ABA-anlæg. Er formålet at forbedre redningsberedskabets evakueringforhold, kan der anvendes forskellige installationer som flugtvejs- og panikbelysning, brandventilation, tryksætning af trapper m.v.

4.1 **Anlægstyper**
Vedrørende standarder, forskrifter, anvisninger mv. henvises til afsnit 1.6
Brug af brandtekniske installationer. Følgende brandtekniske installationer kan f.eks. benyttes:

4.1.1 **Automatiske brandalarmanlæg**
Ved udførelse af automatisk brandalarmanlæg (ABA-anlæg) skal der vælges komponenter, som er bedst egnet til den brand, der kan forventes i det pågældende område, og som giver alarm så tidligt som muligt, idet der dog bør tages hensyn til, at utilsigtet alarm bør undgås. Særlig tages hensyn til fugt, kondens, støv samt røg, som ikke skyldes brand.

Automatiske brandalarmanlæg skal udføres med alarmafgivelse til redningsberedskabet, jf. Bygningsreglement 2015, kapitel 5.4, stk. 17. I bygningsafsnit i anvendelseskategori 6 med personale, tilpasses lokalalarm de stedlige forhold, f.eks. ved at ABA-anlæg udføres, så der også går et lokalsignal for brandalarm til det på institutionen sædvanligt benyttede personaletilkaldesystem.

4.1.2 **Automatiske vandsprinkleranlæg**

Redningsberedskabet har behov for på let vis at komme frem til sprinklercentralen og bør have mulighed for at tilgå sprinklercentralen under brandforløbet. Der bør derfor være direkte adgang fra det fri til sprink-
lercentralen, og sprinklercentralen bør være placeret i sin egen brandsikker enhed, f.eks. en brandsektion.

4.1.3 Røgalarmanlæg

For at sikre driften af røgalarmanlæg skal disse, jf. Bygningsreglement 2015, kapitel 5.4, stk. 13 og 14, være tilsluttet bygningens normale stromforsyning og med batteribackup. Der varsles kun i den enkelte brandcelle/bolig.

I bygninger, hvor der installeres røgalarmanlæg, skal der placeres mindst én røgalarm i hver brandcelle/bolig. For at sikre en hurtig og rettidig alarmering er det vigtigt, at afstanden mellem røgalarmerne ikke er for lang. Oftes er det hensigtsmæssigt, at der ikke er mere end 10 m mellem røgalarmerne. Hvis en brandcelle/bolig er i flere etager, vil det give en hurtigere alarm, hvis der placeres mindst én røgalarm på hver etage. Da der især er risiko for, at en brand ikke bliver opdaget, når folk sover, er det en fordel, hvis røgalarmerne placeres i forbindelse med de rum, hvor folk sover.

For at sikre så hurtig en alarmering som muligt, er hensigtsmæssigt, at placere røgalarmer i hvert opholdsrum og gange/gangarealer. I rum der alene anvendes til køkken kan røgalarmer udelades, da det kan medføre mange utilisiterte alarmer. Hvis der i en brandcelle/bolig er mere end én røgalarm vil det være hensigtsmæssigt at røgalarmerne er serieforbundne, således at aktivering af en alarm medfører aktivering af alle alarmer i brandcellen/boligen.

4.1.4 Varslingsanlæg

Et varslingsanlæg er et anlæg, der har til formål at varsle personer i bygningen om, at de skal flygte til et sikkert sted i bygningen eller til terræn i det fri i tilfælde af en brand. Dette er specielt nødvendigt for bygninger, hvor mange personer skal benytte samme flugtveje. Det er derfor nødvendigt at se på, hvor mange personer der tilsammen skal kunne benytte flugtvejene, uanset hvor mange personer der måtte være i et enkelte bygningsafsnit.

Varsling fra et varslingsanlæg skal tilpasses bygningsafsnittets brug og organisation, jf. Bygningsreglement 2015, kapitel 5.4, stk. 16. Ofte vil det være mest hensigtsmæssigt, at varslingen sker med talende besked. En talende besked medfører en hurtigere og mere præcis reaktion hos de personer, der bliver varslet, og dette vil medføre en hurtigere evakuering af bygningen. Såfremt en talende besked ikke vurderes at være hensigts-
mæssig, må det sikres, at der anvendes en anden forsvarlig varslingsform, og at de tilstedeværende er bekendt med signalet.

I bygningsafsnit med automatiske brandalarmanlæg eller automatiske sprinkleranlæg skal et evt. varslingssystem tillige igangsættes af disse anlæg.

4.1.5 **Brandventilation og røgudlufning**
Brandventilation deles normalt op i nedenstående forskellige hovedformål, som er afhængige af anvendelsen. Ved dimensioneringen af brandventilationen skal det på forhånd fastlægges, hvad brandventilationen eller røgudlufning er beregnet til.

Hovedformålene er:
- **Brandventilation**, der installeres for at øge personsikkerheden

Hovedformålet med denne type brandventilation er at udlufte røg og varme, så personer kan benytte flugtvejene uden at blive påvirket i kritisk grad af røgen og varmen. For at kunne udlufte lokaler efter en mindre brand, der ikke har udløst brandventilationen, bør der være mulighed for, at en del af brandventilationen kan aktiveres manuelt af redningsberedskabet i forbindelse med indsatsen.

Denne type brandventilation er ikke krævet i henhold til Bygningsreglement 2015, kapitel 5.4 og er derfor ikke nærmere beskrevet i denne eksempelsamling, idet brandventilation af hensyn til person- sikkerhed bør udformes på baggrund af en brandteknisk dimensionering.

- **Røgudlufning**, der installeres for at sikre redningsberedskabets primære insatsveje

Hovedformålet med denne type af røgudlufning er at sikre, at redningsberedskabet kan foretage en udluftning af lokaler og de primære insatsveje, som typisk er flugtvejstrapperne. Røgudlufningens aktiveres af redningsberedskabet i forbindelse med indsatsen. Eksem-
plér på røgudluftning fremgår af afsnit 6.2 og Bygningsreglement 2015, kap. 5.6.2, stk. 1 og 2.

• Brandventilation, der installeres for at forhindre brandudbredelse fra et røglag

Hovedformålet med denne type brandventilation er at sikre, at redningsberedskabet ved deres fremkomst til brandstedet har mulighed for at aflaste bygningen for varme fra et røglag og sikre, at der ikke sker overtænding i bygningen.

Brandventilation kan aktiveres manuelt af redningsberedskabet, men brugen af denne aktiveringsform bør vurderes i det enkelte tilfælde. Denne type brandventilation svarer til kravene i bygningsreglement 2015, kap. 5.4, stk. 8.

Eksempler på tilstrækkeligt aerodynamisk frit åbningsareal af brandventilationen fremgår af afsnit 4.2. For staldbyggeri henvises endvidere til afsnit 8.3.4, og for industri- og lagerbygninger i én etage henvises der endvidere til afsnit 9.4.

Brandventilation, der installeres for at sikre, at bygningsdele ikke påvirkes kritisk af en brand.

Hovedformålet med denne type af brandventilation er at udlufte røg og varme, så bygningsdelene bevarer deres brandmodstandsevne, og værdier i størst muligt omfang bevares. Brandventilation udført som beskrevet i DS/EN 12101-2 Brandventilation vil som hovedregel skulle aktiveres automatisk ved detektering af varme i rummet.

Ved udførelse af et brandventilationsanlæg er det vigtigt at vurdere, hvad anlægget skal anvendes til, inden der træffes beslutning om, hvordan anlægget skal udføres. Et anlæg kan tilgodese flere funktioner. Brandventilation kan udføres som naturlig ventilation eller som mekanisk ventilation.

Røgzoner

For at sikre en effektiv brandventilation og reducere røgskader skal store rum med brandventilation forsynes med røgskærme, der opdeler den øverste del af rummet (ca. 1/3 af rumhøjden) i røgzoner på højst 2.000 m². Røgskærmerne bør udføres efter DS/EN 12101-1.
Opdeles rummet med røgskærme, bør de aerodynamiske fri åbningsarealer, der er beskrevet i eksemplerne for de enkelte typer brandventilation, etableres i hver enkelt røgzzone. Er der høje bjælker i rummet, så røgen ikke let kan strømme til en brandventilationsåbning, bør der etableres ekstra brandventilationsåbninger for at sikre, at effekten af brandventilationen ikke forringes. Normalt kan der ses bort fra bjælker, der har en højde på mindre end 10 % af rumhøjden.

Placering
Brandventilationen bør være fordelt jævnt i rummet. Ved naturlig (termisk) brandventilation bør der ikke være mere end 12 m til nærmeste brandventilationsåbning. Ved taghældninger over 7° bør brandventilationsåbningerne være placeret højst muligt i rummet.

Erstatningsluft

Af hensyn til at sikre en effektiv erstatningsluft, bør åbninger for erstatningsluft aktiveres samtidig med at brandventilationen aktiveres. For manuelt aktiverede brandventilationsanlæg, som redningsberedskabet anvender i forbindelse med deres indsats, kan erstatningsluften udgøres af f.eks. porte eller døre til det fri med tilstrækkeligt aerodynamisk frit åbningsareal, som let kan åbnes efter behov.
Åbninger for erstatningsluft bør placeres lavt, så erstatningsluften ikke fører til en opblanding af frisk luft i røgen, hvorved orientering vanskeliggøres. Er bygningen udført med røgskærme bør åbningerne placeres lavere end underkanten af røgskærmene. Åbninger i ydervægge skal placeres, så kun halvdelen af det nødvendige areal kan udsættes for sug ved vindpåvirkning, f.eks. ved at åbningerne placeres i modstående sider af bygningen.

Brandventilation og sprinkling

I sprinklede områder, hvor der tillige er installeret brandventilation, skal man være opmærksom på, at brandventilationen kan have en ugunstig indvirkning på sprinklingens effekt, ligesom sprinkling kan have en ugunstig indvirkning på brandventilationens mulighed for at bortventilere røg og varme.

I de tilfælde, hvor brandventilation udføres for at holde flugtveje røgfri, vil det være hensigtsmæssigt at aktivere brandventilationen automatisk uafhængigt af sprinkleranlægget. I øvrige tilfælde vil det normalt være mest hensigtsmæssigt, at brandventilationen først aktiveres efter, at sprinklingen er udløst. Ofte kan man lade redningsberedskabet udløse brandventilationen manuelt.

Indskudte etageadskillelser

Er der brandventilation i et lokale, er det vigtigt, at der tages højde for, at effekten af brandventilationen ikke reduceres væsentligt på grund af forskudte etageadskillelser. Normalt vil mindre indskudte etageadskillelser, som er placeret hensigtsmæssigt, ikke reducere brandventilationens effekt væsentligt.

Udførelse af brandventilationsåbninger

Ved deklarering i henhold til DS/EN 12101-2 Brandventilation kan det være hensigtsmæssigt at anvende nedenfor anførte specifikationer, idet de fleste normale anvendelsesfald vil være omfattet. DS/EN 12101-2, Brandventilation giver bl.a. mulighed for at deklarere følgende egenskaber:
- aerodynamiske frie åbningsarealer (Aa)
- pålidelighed
- evne til at bære og virke ved snelast
- funktion ved lave temperaturer
- evne til at modstå og virke ved vindlast (sug)
- funktion under brand
- reaktion på brand

Det er vigtigt at sikre, at brandventilationsåbningen fungerer i tilfælde af brand. Idet en brandventilations-åbning antages at have en levetid på ca. 25 – 30 år, og da den bør afprøves mindst 1 gang om året, vil en pålide-lighedsklasse (RE) svarende til 50 åbninger og lukninger være relevant.

Benyttes brandventilationsåbningen også til automatisk regulert komfortventilation, bør den kunne åbne og lukke 10.000 gange, når den kun bærer egenlasten.

En brandventilationsåbning, som er deklareret til en snelast (SL) på 720 N/m2, vil kunne anvendes i de fleste almindelige tilfælde med lav taghældning. Der kan dog være brandventilationsåbninger, som er placeret mindre gunstigt og som derfor kan blive udsat for en større snelast.

Det anbefales, at brandventilationsåbningerne deklareres ned til -5 °C (T) for at tage højde for de mest sandsynlige af de kritiske vejrmæssige forhold.

Med hensyn til vindpåvirkning (WL) skal denne deklaration sikre, at brandventilationsåbningen ikke skades, når den i lukket position udsettes for store vindpåvirkninger. Under normale forhold anses det for at være tilstrækkeligt, at brandventilationsåbningen deklareres til 1500 N/m2.

Endelig bør en brandventilationsåbning kunne fungere på trods af, at den bliver påvirket af varme fra en brand. For at kunne opnå dette anbefales det, at brandventilationsåbningen de testes til klasse B 300.
I henhold til standarden kan brandventilationsåbningens egenskaber med hensyn til reaktion på brand også dokumenteres. Det anbefales at brandventilationsåbningen mindst har overflade klasse E-d2.

Standarden foreskriver ikke konkrete mindste arealer af brandventilationsåbningerne. Eventuelle begrænsninger i åbningsarealer vil fremskynde for produkter, der er afprøvede iht. standarden, af specifikationerne for det enkelte produkt. Anvendes simple metoder uden prøvning bør det aerodynamisk, fri åbningsareal ikke være mindre end 0,4 m² og side-længden bør være mellem 0,5 m og 2,5 m. Karmhøjden må ved simple vurderinger ikke være mindre end 0,3 m, jf. standarden.

Udover ovenstående muligheder for deklarering medfører DS/EN 12101-2, at åbningstiden højst må være 60 sekunder.

Det bemærkes, at ”tagelementer med kort kollapstid” ikke kan benyttes som termiske (naturlige) brandventilationsåbninger.

4.1.6 Automatiske branddørlukningsanlæg

Automatiske branddørlukningsanlæg (ABDL-anlæg) er anlæg, som holder selvlukkende døre i åben stilling og ved en given røgkoncentration lukker dørene.

Aktivering af anlæggene kan enten ske ved selvstændige detektorer koblet til de automatiske branddørlukningsanlæg, eller ved at integrere ABDL-anlæggene med bygningens automatiske brandalarmanlæg.

4.1.7 Flugtvejs- og panikbelysning

For at sikre en forsvarlig evakuering kan flugtvejs- og panikbelysning være nødvendig i bygninger, hvor der er mange mennesker samlet, samt i bygninger, hvor evakueringen er vanskeliggjort af personernes mobilitet, evne til selv at komme ud af bygningen eller manglende kendskab til bygningen.

Flugtvejs- og panikbelysning bør opretholdes i så lang tid, som det tager at evakuere bygningen. Ofte bliver der anvendt anlæg, som opretholder belysningen i 30 - 60 minutter efter en utilsigtet afbrydelse af den normale belysning.
Flugtvejsbelysning er belyste, gennemlyste eller fluorescerende (selvlysende) flugtvejsskilte, der placeres over eller umiddelbart ved udgangsdøre og flugtvejsdøre, suppleret med hensvisningsskilte i fornødent omfang. Belyste skilte kan enten belyses forfra eller bagfra. Flugtvejsbelysning omfatter også belysning af gulvarealer i flugtveje og i store lokaler. Selvlysende skilte kan kun anvendes, hvor der er sikret lys til den nødvendige opladning.

Panikbelysning er den del af en nødbelysning, som sikrer tilstrækkelig belysning af gulvarealer til at personer har mulighed for at nå frem til et sted, hvor der findes en flugtvej.

Panikbelysning udføres, så personer kan orientere sig i/om flugtvejene. Dette kan normalt opnås ved, at panikbelysningen giver mindst 1,0 lux på gulvarealer i flugtveje og på flugtvejsarealer i det fri.

4.1.8 Skilte og markeringer

Skilte mv., der indgår som et led i en bygnings brandsikkerhed, bør udføres under hensyntagen til deres funktion. Det gælder f.eks. med hensyn til størrelse, farve, symboler mv.

4.1.9 Slangevinder

Tiden, fra brandens start til slukningsindsatsen påbegyndes, er af afgørende betydning for brandens størrelse. Men for at slukningsindsatsen kan have den ønskede effekt, skal det anvendte udstyrs kapacitet være tilstrækkelig. Derfor bør personer i bygningsafsnittet have de nødvendige slukningsredskaber til rådighed.

Slangevinder bør fortrinsvis anbringes ved indgange til rum, i gangarealer og i flugtveje. Der bør ved anbringelsen tages hensyn til placering af maskiner, inventar, oplagring mv., således at slangevinderne altid er let tilgængelige. Slangevinder med en slangelængde på 30 m bør opsættes i et sådant omfang, at den maksimale afstand fra et vilkårligt punkt er 25 m. Når der tages hensyn til inventar etc. bør afstanden målt i ganglinien maksimalt være 30 m. Disse afstande tager højde for, at man ikke går helt hen til bålet for at slukke det og at slangevinden har en vis kastelængde. Antallet af slangevinder bør beregnes for hver brandsektion, idet der ikke regnes med gennemføring af slanger i branddørsåbninger til anden brandsektion.

Vandforsyningen til en slangevinde skal udføres i henhold til Bygningsreglement 2015, kapitel 8.4.
4.1.10 Brandmandselevator

En brandmandselevator er en elevator, der udføres, så elevatoren kan benyttes sikkert på trods af, at der er brand i bygningen.

Det fremgår endvidere af bygningsreglement 2015, kap 5.4, stk. 19, at der i en bygning, hvor gulvet i øverste etage er beliggende mere end 22 m over terræn, ved valg af brandtekniske installationer skal tages særligt hensyn til muligheden for evakuering fra bygningen, redningsberedskabets indsatsstid, adgang til etagerne, brandbelastningen og bygningens konstruktive forhold.

Bygningsafsnit i bygninger med gulv i øverste etage mere end 22 m over terræn bør, uanset anvendelseskategori, udføres med brandmandselevatorer.

4.1.11 Brandcentral

Brandcentralen er det sted i bygningen, hvor redningsberedskabet bør have mulighed for at få overblik over hændelsen via informationer fra de aktive systemer og i indsatssituationen have mulighed for at aktivere visse typer af aktive systemer. Brandcentralen er centrum for redningsberedskabets indsatsledelse, og det er derfor vigtigt, at redningsberedskabet har mulighed for at udføre deres opgave fra brandcentralen. Brandcentralen bør være hensigtsmæssigt placeret i forhold til, hvor redningsberedskabet møder i bygningen, og den bør være placeret i og med adgang fra terrænniveau. Brandcentralen kan være et selvstændigt rum eller et område i et rum med en anden daglig funktion, f.eks. en reception. Hvorvidt brandcentralen er et selvstændigt rum, eller den er placeret i et andet rum, afhænger af redningsberedskabets behov i det enkelte tilfælde. Dette behov vil afhænge af mange faktorer som f.eks. antal og type af brandtekniske installationer, bygningens størrelse og kompleksitet, anvendelseskategori og antallet af personer i bygningen. Man bør dog i hvert enkelt tilfælde overveje sandsynligheden for, at en brand kan forhindre brandcentralens anvendelse. Derudover vil bygningens kompleksitet, størrelse samt antallet af forventede evakuenter,
som kan virke forstyrrende i forhold til indsatsledelse, have betydning for placeringen af brandcentralen.

Der bør i bygninger med gulv i øverste etage mere end 22 m over terræn, afhængig af omfanget af installationer, være en brandcentral.”

4.1.12 Iltreducerende anlæg
Et iltreducerende anlæg er et anlæg, der permanent sørger for at tilføre nitrogen, så forbrænding af stoffer hæmmes væsentligt eller helt undgås. Dermed vil anlægget kunne forebygge, at en brand opstår eller spreder sig.

Et iltreducerende anlæg kan udføres som beskrevet i DSF/prEN 16750 Design af iltreducerende systemer til brandforebyggelse. I standarden findes der ligeledes forslag til iltkoncentrationer.

Et iltreducerende anlæg vil typisk være opbygget af et anlæg til at producere nitrogen, et rørsystem med dyser, der sikrer ensartet iltniveau i rummet, samt et system til at registrere iltniveauet i rummet.

Ved design af anlægget bør der tages højde for, hvilke produkter/materialer der oplægges, da oplaget vil have indflydelse på, hvilken iltkoncentration der bør være i anlægget. Et rørsystem med dyser bør udformes, så det sikres, at der er en ensartet iltkoncentration i hele rummet – også inde i eventuelle reoler. Endelig bør der placeres en række sensorer, som fordeler jævnt i rummet, så det sikres, at iltkoncentrationen registreres med henblik på at fastholde en konstant iltkoncentration.

Hensigten med et iltreducerende anlæg er at forebygge, at en brand opstår i selve rummet. Derimod er anlægget ikke egnet til at forhindre, at en brand spredes ind i rummet som følge af svigt af omgivende bygningsdele under brand. Derfor bør rum, der sikres med iltreducerende anlæg, udføres som en selvstændig brandmæssig enhed, f.eks. en brandsektion.

I forbindelse med design af anlægget er det også væsentligt at sikre, at anlægget bliver udført, så det er muligt at kontrollere og vedligeholde
anlægget, da anlægget skal være funktionsdygtigt i hele bygningens leve-
tid. Dette er tillige vigtigt, da komponenter kan svigte og skal udskiftes,
mens anlægget er i drift. Da der ofte kan opstå utætheder i de omgi-
vende bygnings dele, bør der tages højde herfor, når anlægget dimensio-
neres. Anlægges bør udføres med nødstrømsforsyning eller anden form
for sikker strømforsyning, så der ikke sker forsyningsvigt.

Ved anvendelse af iltreducerende anlæg skal der tages hensyn til, at for-
skellige oplagstyper kan kræve forskellige iltkoncentrationer, for at an-
lægget kan fungere efter hensigten.

Opmærksomheden henledes på, at en reduktion af iltniveauet i et rum
kan have helbredsmæssige konsekvenser for personer, der opholder sig i
rummet. Der henvises til Arbejdstilsynets bestemmelser herom.

4.2 Valg af brandtekniske installationer

Af Bygningsreglement 2015, kapitel 5.4 fremgår kravene til brandteknis-
ske installationer. Kravene er gengivet i nedenstående tabel 4.1. Ved an-
vendelse af tabel 4.1 er det vigtigt, at to eller flere bygningsafsnit af sam-
me anvendelseskategori med fælles flugtveje betragtes som ét afsnit, jf.
bygningsreglement, kapitel 5.4, stk. 3.

For industri- og lagerbygninger i én etage henvises der til afsnit 9.4.
Tabel 4.1. Aktive brandtekniske installationer.

<table>
<thead>
<tr>
<th>Anvendelseskategori</th>
<th>Røgalarmanlæg</th>
<th>Automatiske brandsalarmanlæg</th>
<th>Automatiske sprinkleranlæg</th>
<th>Flugtvejs- og panikbelysning</th>
<th>Slangevinder</th>
<th>Varslingsanlæg</th>
<th>Brandventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>I visse avls- og driftsbygninger til dyrehold med etagerealet større end 2.000 m², med mindre afsnittet er sprinklet. (BR 5.4, stk. 4)</td>
<td>I garageanlæg med etagerealet større end 2.000 m² (BR 5.4, stk. 7)</td>
<td>Flugtvejsbelysning i garageanlæg med etagerealet større end 600 m² (BR 5.4, stk. 7)</td>
<td>I avls- og driftsbygninger til dyrehold med etagerealet større end 1.000 m² (BR 5.4, stk. 6)</td>
<td>I garageanlæg med etagerealet større end 600 m² (BR 5.4, stk. 7)</td>
<td>I rum med et gulvareal større end 1.000 m², medmindre rummet er forsynet med automatisk brandinstallation (BR 5.4, stk. 8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Garageanlæg med etagerealet større end 150 m² skal forsynes med selvstændig ventilation, der kan fjeme eksplosive dampe og kulilte) (BR 5.4, stk. 7)</td>
</tr>
<tr>
<td>Anvendelses-kategori</td>
<td>Røgalarmelanlæg</td>
<td>Automatisk brandalarmenanlæg</td>
<td>Automatisk sprinkleranlæg</td>
<td>Flugtvejs- og panikbelysning</td>
<td>Slangevinder</td>
<td>Varslingsanlæg</td>
<td>Brandventilation</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I bygningsafsnit med automatisk varsling. (BR 5.4, stk. 11)</td>
<td>I bygningsafsnit med etageareal større end 2.000 m² (BR 5.4, stk. 12)</td>
<td>I flugtveje, der tilsammen er beregnet til mere end 150 personer, og i opholdsmo til mere end 150 personer (BR 5.4, stk. 11)</td>
<td>I garageanlæg med etageareal større end 600 m² (BR 5.4, stk. 7)</td>
<td>I bygningsafsnit med tilhørende flugtveje beregnet til mere end 150 personer (BR 5.4, stk. 9)</td>
<td>I rum med et gulvareal større end 1.000 m², medmindre rummet er forsynet med automatisk brandventilation (BR 5.4, stk. 8)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>I bygningsafsnit med etageareal større end 2.000 m² (BR 5.4, stk. 7)</td>
<td>I bygningsafsnit, hvor alle opholdsmo har direkte adgang til terræn i det fri, og beregnet til højst 150 personer, kan flugtvejs- og panikbelysning undlades (BR 5.4, stk. 11)</td>
<td>Flugtvejsbelysning i garageanlæg med etageareal større end 600 m² (BR 5.4, stk. 7)</td>
<td>Panikbelysning i garageanlæg med etageareal større end 2.000 m² (BR 5.4, stk. 7)</td>
<td>I bygningsafsnit, hvor alle opholdsmo har dør direkte til terræn i det fri, og der ikke er rum beregnet til mere end 150 personer, kan varslingsanlæg undlades (BR 5.4, stk. 9)</td>
<td>I garageanlæg med etageareal større end 150 m² skal forsynes med selvstændig ventilation, der kan fjerne eksplosive dampe og kulite) (BR 5.4, stk. 7)</td>
</tr>
</tbody>
</table>

Elsempeksamling om brandsikring af byggeri
Tabel 4.1. Aktive brandtekniske installationer (fortsat).

<table>
<thead>
<tr>
<th>Anvendelseskategori</th>
<th>Røgalarmenanlæg</th>
<th>Automatisk brandalarmanlæg</th>
<th>Automatisk sprinkleranlæg</th>
<th>Flugtvejs- og panikbelysning</th>
<th>Slangevinder</th>
<th>Varslingsanlæg</th>
<th>Brandventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Altid (BR 5.4, stk, stk. 13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>I bygningsafsnit med tilhørende flugtveje med højst 10 soverum eller højst 50 sovepladser (BR 5.4, stk. 14)</td>
<td>I bygningsafsnit med tilhørende flugtveje med mere end 10 soverum eller mere end 50 sovepladser, medmindre alle soverum har dør direkte til terræn i det fri (BR 5.4, stk. 14)</td>
<td>I bygningsafsnit med tilhørende flugtveje med etageareal større end 1.000 m², medmindre alle soverum har dør direkte til terræn i det fri (BR 5.4, stk. 14)</td>
<td>I bygningsafsnit med tilhørende flugtveje, medmindre alle soverum har dør direkte til terræn i det fri (BR 5.4, stk. 14)</td>
<td>I bygningsafsnit med tilhørende flugtveje med mere end 10 soverum eller mere end 50 sovepladser, medmindre alle soverum har dør direkte til terræn i det fri (BR 5.4, stk. 14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Altid Personalet skal varsles (BR 5.4, stk. 15)</td>
<td>I bygninger med - soverumsafsnit, hvor soverumsafsnittet har et etageareal større end 1.000 m², - bygningen har et etageareal større end 1000 m² og - bygningen er i mere end 1 etage Personalet skal varsles (BR 5.4, stk. 15)</td>
<td>I flugtveje i bygningsafsnit større end 1.000 m² (BR 5.4, stk. 15)</td>
<td>Altid (BR 5.4, stk. 15)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**) Automatisk varsling betyder, at varslingsanlægget skal aktiveres af et ABA-anlæg, som udføres med alarmafgivelse til redningsberedskabet."
Garageanlæg

Bygningsreglement 2015, kapitel 5.4, stk. 7 foreskriver, at garageanlæg skal forsynes med selvstændig ventilationsanlæg. Da ventilationsanlægget har til formål at fjerne eksplosive dampe og kulilte, vil der ikke være behov for at brandsikre ventilationsanlægget udover, hvad der følger af de normale krav til komfortventilation.

Revisionsgrave vil normalt ikke blive ventileret tilstrækkeligt, hvis der ikke tages særskilt hensyn til disse. Ofte er det nødvendigt at ventileri revisionsgrave separat med et luftskifte på ca. 5 gange i timen i graven.

Rum over 1.000 m²

Bygningsreglement 2015, kapitel 5.4, stk. 8 beskriver, at der i anvendelseskategori 1 og 3 enten skal installeres automatisk brandventilation eller automatisk sprinkling i rum, der er større end 1000 m². Hensigten med kapitel 5.4, stk. 8 er at sikre, at der i store rum ikke opstår brande, som ikke umiddelbart kan kontrolleres. Udgangspunktet er, at der i disse rum skal være brandventilation, som kan aflaste rummet for røg og varme, så det bliver muligt at foretage en rimelig slukningsindsats.

Rum er i denne forbindelse rum, der er adskilt fra andre rum med vægge og døre af f.eks. uklassificerede bygningsdele.

Udformes brandventilationen efter DS/EN 12101-2 Brandventilation vil et aerodynamisk frit åbningsareal på mindst 10 m² pr. røgzone ofte være tilstrækkeligt. I høje rum kan dette areal reduceres yderligere og i lavloftere rum med rumhøjde under 4,0 m må åbningsarealet evt. forøges.

For et garageanlæg over terræn, hvor etagerne er forbundet med køreramper inde i bygningen, vil det sammenhængende etageareal udgøre ét rum. Hvor flere etager i garageanlæg udgør et rum, bør etagerne udføres som selvstændige røgzoner.

For visse typer bygninger, f.eks. lagerbygninger eller garageanlæg, kan der være permanente åbninger til det fri. Effektiviteten af disse åbninger må vurderes fra gang til gang.

Varslingsanlæg

Bygningsreglement 2015, kapitel 5.4, stk. 9 omhandler varsling af bygningsafsnit i anvendelseskategori 2 og 3.
Kapitel 5.4, stk. 9 forudsætter, at alle bygningsafsnit i anvendelseskategori 2 og 3 betragtes som ét bygningsafsnit, hvis de har fælles flugtveje.

I bygningsafsnit, hvor alle opholdsrum har adgang til terræn i det fri, vil personer let og uhindret af branden kunne forlade bygningen. Der vil derfor ikke være behov for et varslingsanlæg. Tillige kan mindre rum som f.eks. mindre kontorer på skoler, mindre servicerum for medarbejderne i butikker mv., også udføres uden varslingsanlæg, selvom der ikke er direkte adgang til terræn i det fri.

Flugtvejs- og panikbelysning

I forbindelse med bestemmelse af behovet for flugtvejs- og panikbelysning er det, som for bestemmelse af behovet for varslingsanlæg, nødvendigt at vurdere det samlede antal personer, der skal benytte flugtvejene. Bygningsreglement 2015, kapitel 5.4, stk. 10 og 11 foreskriver derfor, at flugtveje, der er beregnet til mere end 150 personer i anvendelseskategori 2, samt i flugtveje og rum i anvendelseskategori 3 beregnet til mere end 150 personer, skal have flugtvejs- og panikbelysning.

I bygningsafsnit til undervisning i anvendelseskategori 2, hvor alle undervisningsrum har dør direkte til terræn i det fri, vil der ikke være behov for flugtvejs- og panikbelysning for en sikker evakuering af bygningen.

Personer, som opholder sig i rum i anvendelseskategori 3, kender ikke nødvendigvis flugtvejene. Der vil derfor under alle omstændigheder være behov for en markering af flugtvejene, uanset om alle opholdsrum har dør direkte til terræn i det fri.

Afvigelser

Som det fremgår af bygningsreglement 2015, kapitel 5.4, stk. 18, er det muligt at fravige bestemmelserne i kapitel 5.4, stk. 4 - stk. 17, hvis det over for kommunalbestyrelsen kan dokumenteres, at sikkerhedsniveauet som beskrevet i kapitel 5.1, stk. 1 kan opnås på anden måde.

Kapitel 5.4, stk. 18 kan ofte anvendes, uden at der nødvendigvis stilles andet i stedet eller foretages en beregningsmæssig eftervisning. Det kan f.eks. være ved mindre afvigelse fra eksemplerne, hvor sikkerheden umiddelbart kan vurderes at være tilfredsstillende.
Bygninger med gulv i øverste etage mellem 22 m og 45 m over terræn
For bygningsafsnit i bygninger med gulv i øverste etage mellem 22 og 45 m vil det derfor være hensigtsmæssigt at installere automatisk sprinkleranlæg uanset anvendelseskategori. I bygningsafsnit i anvendelseskategori 1 og 4 kan automatisk sprinkleranlæg udelades i ukomplicerede bygninger med gulv i øverste etage maksimalt 45 m over terræn, f.eks. hvis bygningsafsnittene i bygningen er opdelt i brandmæssige enheder på maksimalt 150 m², og der samtidig sikres mod lodret brandspredning f.eks. med brystninger, der er mindst 1,2 meter høje, og som har en brandteknisk klassifikation på mindst E30.

Bygningsafsnit i bygninger med gulv i øverste etage mere end 22 m over terræn bør, uanset anvendelseskategori, udføres med brandmandselevatorer.
5 Brand- og røgspredning

Der henvises tillige til afsnit 7 og 8, og for industri- og lagerbygninger i én etage henvises der til afsnit 9.5.

5.1 Brand- og røgspredning i det rum, hvor branden opstår

5.1.1 Indvendige overflader på væg, loft og gulv

Ifølge bygningsreglement 2015, kapitel 5.5.1, stk. 1, skal indvendige væg- og loftoverflader samt gulvbelægninger udføres på en sådan måde, at de ikke bidrager væsentligt til brand- og røgudviklingen i den tid, som personer, der opholder sig i rummet, skal bruge til at forlade lokalet. For flugtveje gælder tilsvarende krav, jf. bygningsreglement 2015, kapitel 5.2, stk. 5.

I nedenstående tabel 5.1 og 5.2 er der givet en række eksempler på, hvordan indvendige overflader kan udføres

Tabel 5.1. Eksempler på udførelse af beklædninger.

<table>
<thead>
<tr>
<th>BYGNINGENS UDFORMNING</th>
<th>VÆGBEKLÆDNING</th>
<th>LOFTBEKLÆDNING</th>
<th>GULVBELÆGNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generelt</td>
<td>Beklædning klasse K, 10 B-s1,d0 [klasse 1 beklædning]</td>
<td>Beklædning klasse K, 10 B-s1,d0 [klasse 1 beklædning]</td>
<td></td>
</tr>
<tr>
<td>Bygninger i 1 etage med brandceller på indtil 150 m²</td>
<td>Beklædning klasse K, 10 D-s1,d0 [klasse 2 beklædning]</td>
<td>Beklædning klasse K, 10 D-s1,d0 [klasse 2 beklædning]</td>
<td></td>
</tr>
<tr>
<td>Brandceller på indtil 150 m² i bygninger, hvor gulv i øverste etage er højst 22 m over terræn</td>
<td>Beklædning klasse K, 10 D-s1,d0 [klasse 2 beklædning]</td>
<td>Beklædning klasse K, 10 B-s1,d0 [klasse 1 beklædning]</td>
<td></td>
</tr>
</tbody>
</table>
Tabel 5.1. Eksempler på udførelse af beklædninger i flugtveje. (fortsat)

<table>
<thead>
<tr>
<th>BYGNINGENS UDFORMNING</th>
<th>VÆGBEKLÆDNING</th>
<th>LOFTBEKLÆDNING</th>
<th>GULVBEEKLÆDNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generelt</td>
<td>Beklædning klasse</td>
<td>Beklædning klasse</td>
<td>Gulvbelægning klasse</td>
</tr>
<tr>
<td></td>
<td>$K_{10} B-s1,d0$</td>
<td>$K_{10} B-s1,d0$</td>
<td>$D_{1}-s1$</td>
</tr>
<tr>
<td>Bygninger i 1 etage med brandceller på indtil 150 m²</td>
<td>Beklædning klasse</td>
<td>Beklædning klasse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$K_{1} D-s2,d2$</td>
<td>$K_{1} D-s2,d2$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anvendelseskategori 4 og 5</th>
<th>Beklædning klasse</th>
<th>Beklædning klasse</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Generelt</td>
<td>Beklædning klasse</td>
<td>Beklædning klasse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$K_{10} B-s1,d0$</td>
<td>$K_{10} B-s1,d0$</td>
<td></td>
</tr>
<tr>
<td>Bygninger med 1 etage</td>
<td>Beklædning klasse</td>
<td>Beklædning klasse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$K_{1} D-s2,d2$</td>
<td>$K_{1} D-s2,d2$</td>
<td></td>
</tr>
<tr>
<td>Bygninger, hvor gulv i øverste etage er højst 5,1 m over terræn</td>
<td>Beklædning klasse</td>
<td>Beklædning klasse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$K_{1} D-s2,d2$</td>
<td>$K_{1} D-s2,d2$</td>
<td></td>
</tr>
<tr>
<td>Bygninger, hvor gulv i øverste etage er højst 22 m over terræn</td>
<td>Beklædning klasse</td>
<td>Beklædning klasse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$K_{1} B-s1,d0$</td>
<td>$K_{1} B-s1,d0$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anvendelseskategori 6</th>
<th>Beklædning klasse</th>
<th>Beklædning klasse</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Generelt</td>
<td>Beklædning klasse</td>
<td>Beklædning klasse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$K_{10} B-s1,d0$</td>
<td>$K_{10} B-s1,d0$</td>
<td></td>
</tr>
</tbody>
</table>

I rum, som frembyder særlig fare for brand, som f.eks. fysiklokaler på skoler, storkøkkener mv., vil det normalt være nødvendigt at udføre væg- og loftbeklædninger som beklædning klasse $K_{10} B-s1,d0$ [klasse 1 beklædning] og gulvbelægninger som gulvbelægning klasse $D_{1}-s1$ [klasse G gulvbelægning] for at sikre mod uacceptable brændspredning. Ovenstående eksempler på beklædninger omfatter også væg- og loftsoverflader i tagrum, som anvendes på en sådan måde, at det medfører en forøget brandbelastning eller brandrisiko.

For så vidt angår overflader i flugtveje henvises til tabel 5.2.

Tabel 5.2. Eksempler på udførelse af beklædninger i flugtveje.

<table>
<thead>
<tr>
<th>FLUGTVEJE I ANVENDELSESKATEGORI 1-6</th>
<th>VÆGBEKLÆDNING</th>
<th>LOFTBEKLÆDNING</th>
<th>GULVBELÆGNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beklædning klasse</td>
<td>Beklædning klasse</td>
<td>Gulvbelægning klasse</td>
<td></td>
</tr>
<tr>
<td>$K_{10} B-s1,d0$</td>
<td>$K_{10} B-s1,d0$</td>
<td>$D_{1}-s1$</td>
<td></td>
</tr>
</tbody>
</table>

[79x25]Eksempelsamling om brandsikring af byggeri
I tabel 5.1 og 5.2 anføres, at nogle overflader på væg eller loft bør udføres som beklædning klasse K₁ 10 B-s1,d0 [klasse 1 beklædning]. For disse overflader er det dog normalt acceptabelt, at op til 20 pct. af væg- og loftoverfladerne i et rum udføres som beklædning klasse K₁ 10 D-s2,d2 [klasse 2 beklædning]. Det forudsættes, at vægoverfladerne henholdsvis loftoverfladerne, som opfylder de ovenfor angivne reducerede krav, er jævnt fordelt i rummet. Overfladearealerne er de ved en fuldt udviklet brand eksponerede overflader. Ovenstående eksempel gælder ikke i flugtvejsgange, hvor overflader på væg eller loft bør udføres som beklædning klasse K₁ 10 B-s1,d0 [klasse 1 beklædning].

Gulvbelægning klasse D₁-s1 [klasse G gulvbelægning] i flugtveje omfatter gulvbelægning i såvel gange som på ramper og trapper.

5.1.2 Nedhængte lofter

Der er ofte et ønske om at anbringe et nedhængt loft under en etageadskillelse eller under en tagkonstruktion. Et nedhængt loft er et loft, som ikke opfylder kravene til beklædning klasse K₁ 10 B-s1,d0 [klasse 1 beklædning] eller til beklædning klasse K₁ 10 D-s2,d2 [klasse 2 beklædning].

Nedhængte lofter inkl. ophængningssystemet bør ikke bidrage til brand- og røgspredningen i den tid, som personer, der opholder sig i rummet, skal bruge til at forlade rummet. For at opnå dette kan nedhængte lofter udføres af materialer, som er materiale klasse B-s1,d0 [klasse A materiale].

Væg- og loftoverflader over et nedhængt loft kan sidestilles med de øvrige væg- og loftoverflader i det pågældende rum.

For at reducere risikoen for brand- og røgspredning via loft og over vægge, bør alle vægge være tætte og føres op igennem det nedhængte loft og op i tæt forbindelse med undersiden af den overliggende etageadskillelse eller tagkonstruktion. Ønskes der mulighed for en fleksibel indretning, kan hulrummet over det nedhængte loft i stedet for opdeles i mindre felter med bygningsdele f.eks. svarende til væggenes brandtekniske egenskaber.
Figur 5.1. Nedhængt loft og skillevægge.

5.1.3 Rør- og kabelinstallationer

Ifølge bygningsreglement 2015, afsnit 5.5.1, stk. 1 skal indvendige overflader udføres på en sådan måde, at de ikke bidrager væsentligt til brand- og røgudviklingen i den tid, som personer, der opholder sig i rummet, skal bruge til at bringe sig i sikkerhed.

Dette krav gælder også for rørinstallationer – både for uisolerede rør og for rør, som er forsynet med et isoleringsystem (isoleringsmateriale og afdækning mv.).

Det anbefales, at rør (inklusive isoleringsmaterialer) mindst har en overflade klasse E-d2 iht. DS/EN 13501-1, og at elkabler samt signalkabler for tele- og datatrafik mindst udføres som klasse Eca iht. DS/EN 13501-6.

Hvis et eller flere rør i et rum har indvendig diameter større end 106 mm og/eller hvis det samlede overfladeareal (inklusive isoleringssystem) for alle rør udgør mere end 5 pct. af summen af arealerne af rummets væg- og loftoverflader, vil det være hensigtsmæssigt at sikre en bedre brandmæssig kvalitet af rør og kabelinstallationernes overflader.

Ligeledes gælder, at hvis kabler i et rum (undtaget teknikrum og skakte) har et samlede overfladeareal på mere end 5 pct. af summen af arealerne af rummets væg- og loftoverflader, vil det være hensigtsmæssigt at sikre en bedre brandmæssig kvalitet af kabelinstallationernes overflader.
5.2 Brand- og røgspredning i den bygning, hvor branden opstår eller til andre bygninger

5.2.1 Udvendige vægoverflader
Ifølge bygningsreglement 2015, kapitel 5.5, stk. 1, skal spredning af brand og røg til andre brandmæssige enheder forhindres i den tid, som er nødvendig for evakuering. Ligeledes skal overflader og tagdækninger udføres på en sådan måde, at de ikke giver et væsentligt bidrag til brandspredningen.

I tabel 5.3 er givet en række eksempler på, hvorledes udvendige vægoverflader på en bygning kan udføres.

<table>
<thead>
<tr>
<th>Tabel 5.3. Eksempler på udførelse af udvendige vægoverflade.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EKSEMPLER PÅ UDFØRELSE AF UDVENDIGE VÆGOVERFLADE</td>
</tr>
<tr>
<td>Bygninger med 1 etage</td>
</tr>
<tr>
<td>Anvendelseskategori 1-6 Beklædning klasse K₁₀ D-s₂,d₂ [klasse 2 beklædning] eller ydervæg med udvendig overflade klasse D-s₂,d₂</td>
</tr>
<tr>
<td>Højde til gulv i øverste etage højst 5,1 m over terræn</td>
</tr>
<tr>
<td>Anvendelseskategori 1-6 Beklædning klasse K₁₀ B-s₁,d₀ [klasse 1 beklædning]</td>
</tr>
<tr>
<td>Beklædning klasse K₁₀ D-s₂,d₂ [klasse 2 beklædning] eller ydervæg med udvendig overflade klasse D-s₂,d₂, hvis bygningen er udført med automatisk sprinkleranlæg</td>
</tr>
<tr>
<td>Højde til gulv i øverste etage højst 22 m over terræn (se figur 5.2)</td>
</tr>
<tr>
<td>Anvendelseskategori 1-6 Beklædning klasse K₁₀ B-s₁,d₀ [klasse 1 beklædning]</td>
</tr>
<tr>
<td>Mindre partier med et samlet areal på omkring 20% af ydervæggens areal kan udføres som beklædning klasse K₁₀ D-s₂,d₂ [klasse 2 beklædning] eller som ydervæg med udvendig overflade klasse D-s₂,d₂. Partierne placeres, så risikoen for brandspredning fra en brandmæssig enhed til en anden enhed minimeres</td>
</tr>
<tr>
<td>Højde til gulv i øverste etage mere end 22 m over terræn</td>
</tr>
<tr>
<td>Anvendelseskategori 1-6 Beklædning klasse K₁₀ B-s₁,d₀ [klasse 1 beklædning]</td>
</tr>
</tbody>
</table>

* Der stilles normalt ikke krav til reaktion på brand egenskaberne for døre, vinduesrammer og karne. En undtagelse herfra er, hvor det er foreskrevet at dør, vinduesramme og karne skal bestå af produkter, der mindst er materiale klasse A₂-s₁,d₀ [ubrændbart materiale].
Figur 5.2. Eksempel på mindre partier med et samlet areal på omkring 20 % af ydervæggens areal.

En udad skrående ydervæg er ikke omfattet af disse retningslinier og risikoen for lodret brandspredning langs bygningens yderside, herunder brandspredning fra vindue til vindue skal derfor dokumenteres på anden vis. Tilsvarende gælder for en bygning hvor højde til gulv i øverste etage er mere end 22 m over terræn.

For bygninger med glasfacader bør der udføres en nærmere vurdering af risikoen for brandspredning mellem bygningerne. Dette kan bl.a. gøres ved at udføre en strålingsberegning som beskrevet i “Information om brandteknisk dimensionering“.

Der er ofte et ønske om at anbringe en regnskærm uden på en ydervæg med udvendig vægoverflade i overensstemmelse med tabel 5.3. En regnskærm har et bagved liggende ventileret hulrum. Ophængningssystemet for en regnskærm betragtes som en del af regnskærmen. En regnskærm kan, alt efter udførelsen, medføre en øget risiko for brandspredning. Risikoen for brandspredning kan reduceres ved, at regnskærmen (inklusive ophængningssystemet) udføres af materiale klasse B-s1,d0 [klasse A materiale]. Sædvanligvis kan det dog accepteres, at ophængningssystemet udføres af materiale klasse D-s2,d2 [klasse B materiale], hvis ophængningssystemets fri overflade udgør højst 10 pct. af den samlede overflade i det ventilerede hulrum.
Når en regnskærm anvendes uden på en ydervæg med udvendig vægoverflade i overensstemmelse med tabel 5.3, må det ventilerede hulrum bag regnskærmen passere bygningens brandcelle- og brandsektionsafgrænsende bygningsdele.

Undersiden af altanplader af materialer, som ikke mindst er materiale klasse A2-s1,d0 [ubrændbart materiale], kan for at hindre brandspredning fra etagen under altanen udføres som beklædning klasse K_{10} B-s1,d0 [klasse 1 beklædning].

5.2.2 Tagdækninger

Brandspredning kan også ske via bygningens tagdækning. For at modvirke dette er det vigtigt, at tagdækningen er brandmæssigt egnet. Normalt kan anvendes tagdækning mindst som klasse B_{ROOF}(t2) [klasse T tagdækning].

Tagdækning af strå (stråtag) opfylder ikke kravene til tagdækning klasse B_{ROOF}(t2) [klasse T tagdækning].

Stråtag kan dog normalt anvendes på en bygning, der kan henføres til anvendelseskategori 4 og hvor gulv i øverste etage er højst 5,1 m over terræn, såfremt stråtaget brandsikres som beskrevet nedenfor, og alle lodrette boligskel udføres som mindst bygningsdel klasse EI 60 [BD-bygningsdel 60] og føres op i tæt forbindelse med den nedenfor beskrevne bygningsdel klasse EI 30 [BD-bygningsdel 30].
Umiddelbart under et stråtag bør der være indbygget en bygningsdel klasse EI 30 [BD-bygningsdel 30]. Ethvert hulrum mellem undersiden af stråtaget og oversiden af den foran nævnte bygningsdel bør intet sted have en højde, som er større end 100 mm, og hulrummet bør være lukket langs alle kanter af tagfladerne, således at en brand ikke kan sprede sig til hulrummet fra tagfladernes kanter. Lukningerne langs tagfladernes kanter bør udføres med materiale klasse A2-s1,d0 [ubrændbart materiale].

Hulrum mellem stråtaget og oversiden af den foran nævnte bygningsdel bør ikke passere bygningens brandcelleafgrænsende bygningsdele. På disse steder bør der udføres brandstop som beskrevet i afsnit 3.4.

Ovenlys kan også medføre en risiko for brandspredning. Anvendes der ovenlys af materialer, som ikke mindst er materiale klasse A2-s1,d0 [ubrændbart materiale], er det derfor relevant at vurdere placeringen og omfanget af ovenlysene.

5.2.3 Brandmæssig opdeling af rum og bygningsafsnit, brandmæssige enheder

Ifølge bygningsreglement 2015, kapitel 5.5.1 - 5.5.3, skal brandadskillende bygningsdele sikre mod uacceptable brandspredning fra den brandmæssige enhed, hvor branden opstår.

Formålet med de brandadskillende bygningsdele er, foruden at sikre flugtvejene at begrænse brandspredningen til en størrelse, som redningsberedskabet kan bekæmpe.

Såfremt de brandadskillende bygningsdele ikke er korrekt udført, vil branden ofte få et væsentligt større omfang end forventet, idet der er risiko for, at branden kan trænge forbi den brandadskillende bygningsdel.

Det er derfor vigtigt, at de brandadskillende bygningsdele er korrekt udført, hvor der er fare for brandspredning til andre brandmæssige enheder.

Bygninger på samme grund kan betragtes som én bygning med hensyn til opdeling i brandmæssige enheder, så som brandceller og brandsekctioner, når afstanden mellem bygningerne er mindre end summen af de afstande, de enkelte bygninger skulle have til naboskel.
5.2.4 Brandceller
Ifølge bygningsreglement 2015, kapitel 5.5.2, stk. 2, skal en bygning opdeles, så områder med forskellig personrisiko og/eller brandrisiko udgør selvstændige brandmæssige enheder.

Der bør i den forbindelse tages hensyn til såvel antændelsesmuligheder som til brandbelastning. Derfor kan det anbefales, at enhver enhed i et bygningsafsnit som minimum udgør en selvstændig brandcelle, og at den enkelte brandcelle indrettes på en sådan måde, at det er let at orientere sig om udgangene til flugtvejene.

Figur 5.4. Afstand mellem bygninger.
Eksempler på enheder, som det anbefales at udføre som selvstændige brandsicke, er:

- gang, der er flugtvej
- boligenhed
- kollegieverelse med entre og toilet
- fælleskøkken ved kollegier
- forsamlingslokale
- kontorlokale
- et eller flere kontorlokaler mindre end 150 m², hvis alle lokaler har direkte adgang til flugtvej
- værksted
- butik med mindre lagerrum
- lagerrum
- personalerum
- kantine
- storkøkken
- undervisningsrum
- rum i daginstitutioner. Rum med samme anvendelse kan udgøre en brandcelle
- udstillingslokale
- garage
- sengestue på sygehus eller plejeinstitution
- hotelværelse med toilet mv.
- teknikrum, ventilationsrum og større eltavlerum
- tagrum, der ikke er udnyttet men som kan udnyttes.

Er der til et soverum i anvendelseskategori 5 og 6 knyttet et eller flere opholdsrum/soverum med egen adgangsdør, kan disse rum anvendes som selvstændige enheder, og det kan derfor anbefales, at de hver især udgør en selvstændig brandcelle.

For at begrænse en eventuel brandspredning lodret igennem bygningen kan det tillige anbefales at selvstændige enheder ikke strækker sig over mere end 2 etager.

De bygningsdele, som afgrænser en brandcelle, vil som regel yde den fornødne brandmodstandsevne, hvis de f.eks. udføres som bygningsdel klasse EI 60 [BD-bygningsdel 60]. Mod uudnyttelige tagrum, som ikke kan eller må udnyttes, kan den fornødne brandmodstandsevne opnås ved, at de adskillende væg- og loftkonstruktioner udføres som bygningsdel klasse EI 30 [BD-bygningsdel 30].
I bygningsafsnit i anvendelseskategori 6 kan det af hensyn til den daglige drift være nødvendigt at anvende glas i adskillelsen mellem gang og vagtrum. For at bibeholde brandsikkerhedsniveauet kan adskillelsen udføres som bygningsdel klasse E 30 [F-bygningsdel 30] med dør klasse E 30-C [F-dør 30].

5.2.5 Brandsektioner

Som det fremgår af bygningsreglement 2015, kapitel 5.5, stk. 1, skal en bygning opdeles, så områder med forskellig personrisiko og/eller brandrisiko udgør selvstændige brandmæssige enheder. En bygning kan altså opdeles i flere forskellige anvendelseskategorier.

Der bør i den forbindelse tages hensyn til såvel redningsberedskabets indsatsmulighed, antændelsesmuligheder samt til brandbelastning. Det vil derfor være naturligt, at bygninger eller bygningsafsnit i forskellige anvendelseskategorier udgør selvstændige brandsektioner, og at antallet af sovepladser i en brandsektion ikke overstiger 50, med mindre der er foretaget supplerende sikringstiltag.

Eksempler på bygningsafsnit, som det anbefales at udføre som selvstændige brandsektioner, er:

- en eller flere beboelseslejligheder eller kollegieværelser
- et eller flere soverum i et hotel eller plejeinstitution, med tilhørende gange, vestibule, vagtrum opholdsrum, depotrum og andre rum med direkte tilknytning til det pågældende soverumsafsnit
- et eller flere forsamlingslokaler med tilhørende gange, vestibule, køkken, depotrum og andre lokaler med direkte tilknytning til det pågældende afsnit
- et eller flere undervisningsrum med tilhørende gange, depotrum og andre lokaler med direkte tilknytning til de pågældende undervisningsafsnit
- et eller flere opholdsrum i en daginstitution med tilhørende gange, depotrum og lignende rum med direkte tilknytning til de pågældende daginstitutionsafsnit
- et eller flere kontorlokaler med tilhørende gange, arkivrum, depotrum og lignende rum med direkte tilknytning til de pågældende afsnit
- en garage med areal større end 150 m^2
- et værksted
- en butik med tilhørende service- og lagerrum.

For at en brand ved en påregnelig slukningsindsats kan begrænses til den brandmæssige enhed, hvor branden er opstået, jf. bygningsregle-
ment 2015, kapitel 5.5.2, stk. 2, kan det anbefales, at bygninger og bygnings afsnit opdeles i brandsektioner. I tabel 5.4 er en række eksempler på, hvordan en bygning kan sektioneres.

Tabel 5.4. Eksempler på udførelse af brandsektionsadskillelser og brandsektionsstørrelser.

<table>
<thead>
<tr>
<th>BRANDBROSTANDSEVNE FOR BRANDSEKTIONSADSKILLELSE</th>
<th>Maximalt areal (m²) af brandsektion</th>
<th>Maximalt areal (m²) af sprinklet brandsektion</th>
</tr>
</thead>
<tbody>
<tr>
<td>**ANVENDELSKATEGORI 1 **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygninger med 1 etage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 A2-s1,d0 [BS-bygningsdel 60]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 D-s2,d2 [BD-bygningsdel 60] [klasse B materiale] udført med beklædnin g klasse K2 60 A2-s1,d0 [60 minutters brandbeskyttelsessystem]</td>
<td>5.000</td>
<td>10.000</td>
</tr>
<tr>
<td>Bygninger med mere end 1 etage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 A2-s1,d0 [BS-bygningsdel 60]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 D-s2,d2 [BD-bygningsdel 60] [klasse B materiale] udført med beklædnin g klasse K, 60 A2-s1,d0 [60 minutters brandbeskyttelsessystem]</td>
<td>2.000</td>
<td>10.000</td>
</tr>
<tr>
<td>ANVENDELSKATEGORI 2 OG 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygninger med 1 etage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 A2-s1,d0 [BS-bygningsdel 60]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 D-s2,d2 [BD-bygningsdel 60] [klasse B materiale] udført med beklædnin g klasse K, 60 A2-s1,d0 [60 minutters brandbeskyttelsessystem]</td>
<td>2.000</td>
<td>10.000</td>
</tr>
</tbody>
</table>
Tabel 5.4. Eksempler på udførelse af brandsektionsadskillelser og brandsektionsstørrelser (fortsat).

<table>
<thead>
<tr>
<th>BRANDMODSTANDSEVNE FOR BRANDSEKTIONSADSKILLELSER</th>
<th>Maximalt areal (m²) af brandsektion</th>
<th>Maximalt areal (m²) af sprinklet brandsektion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANVENDELSESKATEGORI 2 OG 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygninger med 1 etage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 A2-s1,d0 [BS-bygningsdel 60]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 D-s2,d2 [BD-bygningsdel 60] [klasse B materiale] udført med beklædning klasse K, 60 A2-s1,d0 [60 minutters brandbeskyttelsessystem]</td>
<td>2.000</td>
<td>10.000</td>
</tr>
<tr>
<td>Bygninger med mere end 1 etage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 A2-s1,d0 [BS-bygningsdel 60]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 D-s2,d2 [BD-bygningsdel 60] [klasse B materiale] udført med beklædning klasse K, 60 A2-s1,d0 [60 minutters brandbeskyttelsessystem]</td>
<td>1.000</td>
<td>10.000</td>
</tr>
<tr>
<td>Bygninger hvor gulv i øverste etage er mere end 9,6 m over terræn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 A2-s1,d0 [BS-bygningsdel 60]</td>
<td>1.000</td>
<td>10.000</td>
</tr>
<tr>
<td>ANVENDELSESKATEGORI 4 OG 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygninger med 1 etage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 A2-s1,d0 [BS-bygningsdel 60]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 D-s2,d2 [BD-bygningsdel 60] [klasse B materiale] udført med beklædning klasse K, 60 A2-s1,d0 [60 minutters brandbeskyttelsessystem]</td>
<td>2.000</td>
<td>10.000</td>
</tr>
<tr>
<td>Bygninger med mere end 1 etage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 A2-s1,d0 [BS-bygningsdel 60]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 D-s2,d2 [BD-bygningsdel 60] [klasse B materiale] udført med beklædning klasse K, 60 A2-s1,d0 [60 minutters brandbeskyttelsessystem]</td>
<td>600</td>
<td>10.000</td>
</tr>
<tr>
<td>Bygninger hvor gulv i øverste etage er mere end 9,6 m over terræn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 A2-s1,d0 [BS-bygningsdel 60]</td>
<td>600</td>
<td>10.000</td>
</tr>
</tbody>
</table>
Eksempelsamling om brandsikring af byggeri

I bygninger med gulv i øverste etage mellem 22 m og 45 m bør de adskil-
lende konstruktioner mod trapperum udføres med samme brandmod-
standsevne som de bærende konstruktioner.

For at en vandret brandsektionsadskillelse kan opfylde sin funktion, jf.
bygningsreglement 2015, kapitel 5.5, stk. 1, er det vigtigt, at risikoen for
brandspredning fra en underliggende etage (brandsektion) til en oven-
liggende etage minimeres.

5.2.6 Brandmæssig adskillelse af trapperum, elevatorskakte og porte mv. samt rum til installationer

Det fremgår af bygningsreglement 2015, kapitel 5.5.2, stk. 3, at installa-
tionsskakte, trapperum, elevatorskakte og lignende skal udgøre selv-
stændige brandmæssige enheder adskilt fra andre dele af bygningen for
dermed at begrænse risikoen for brand- og røgspredning samt sikre, at
evakuerering er mulig.

** Garageanlæg over terræn udført med brandventilation jf. bygningsreglement 2015, kapitel 5.4, stk. 7 kan udføres med et samlet etageareal på indtil 10.000 m², såfremt etagerne kun står i åben forbindelse med hinanden via køreramper.

I bygninger med gulv i øverste etage mellem 22 m og 45 m bør de adskil-
lende konstruktioner mod trapperum udføres med samme brandmod-
standsevne som de bærende konstruktioner.

For at en vandret brandsektionsadskillelse kan opfylde sin funktion, jf.
bygningsreglement 2015, kapitel 5.5, stk. 1, er det vigtigt, at risikoen for
brandspredning fra en underliggende etage (brandsektion) til en oven-
liggende etage minimeres.
Det anbefales derfor, at
• installationsskakte
• trapperum, elevatorskakte og lignende
• rum for drivmaskineri og hydraulikpumper for elevater
• porte, gennemgange og tilsvarende passager, der er flugtvej eller adgangsvej for redningsberedskabet udføres som selvstændige brandsektioner.

Trapperum, skakte mv., som ikke føres op i tæt forbindelse med den yderste tagdækning, kan afsluttes foroven med en vandret brandsektionsadskillelse.

En elevatorskakt, som placeres i samme brandsektion som et trapperum, kan f.eks. udføres af materiale klasse A2-s1,d0 [ubrændbart materiale], hvis trapperummet udgør en brandsektion.

For at forhindre brandspredeing mellem kælder og elevatorskakt kan adgang til elevator fra kælder f.eks. ske gennem et forrum udført som en brandcelle med døre klasse EI₂ 30-C [BD-døre 30].

Figur 5.5. Adgang til kælder i anvendelseskategori 4, hvor de brandmæssige enheder er suppleret med åbne altaner til alle brandcellerne, hvorfra personer kan reddes ned ved hjælp af redningsberedskabets stiger.

Der henvises endvidere til bygningsreglement 2015, kapitel 8.8 om installation af elevatoranlæg og afsnit 2.8.

I bygninger, hvor de adskillende konstruktioner udføres med en brandmodstandsevne på EI 120 A2-s1,d0, bør døre mod trapperum udføres mindst som EI2 60-C.
5.2.7 Gennembrudninger og lignende i brandadskillende bygningsdele

Ifølge bygningsreglement 2015, kapitel 5.5.2, stk. 4, skal gennemføringer til f.eks. kabler, rør og ventilationskanaler udføres, så adskilleternes brandmæssige egenskaber ikke forringes.

Åbninger i brandsektionsadskillende bygningsdele kan som udgangspunkt f.eks. lukkes med dør klasse EI₂₆₀-C [BD-dør 60], jf. dog afsnit 2.5.

Som det fremgår af bygningsreglement 2015, kapitel 5.5.2, stk. 4, skal brandadskillende bygningsdele lukkes tæt ved samlinger og gennemføringer, så adskilleternes brandmæssige egenskaber ikke forringes. For at nedsette risikoen for brandspredning i en bygning, anbefales det at udføre bygningsdelene, så en brand ikke kan sprede sig fra en brandcelle eller brandsektion til et hulrum, som passerer flere brandadskillende bygningsdele. Dette omfatter også brandadskillende bygningsdele, som sammenbygges med ydervægge.

Ventilationsanlæg skal udføres, så de ikke medfører fare for udbredelse af brand eller røg, jf. bygningsreglement 2015, kapitel 8.3, stk. 4.

Ved indbygning af bygningsdele, skorstene, ventilationskanaler, slangeskabe, rør, kabler og lignende i en brandsektionsadskillelse er det vigtigt, at der ved indbygningen tages hensyn til, at adskilleternes brandmodstandsevne eller stabilitet ikke forringes. Taglægter, som er massivt træ i små dimensioner og derfor kun i ringe grad bidrager til brandspredningen, kan føres ubrudt igennem brandsektionsvægge uden brandkam, når mellemrummet mellem lægterne udfyldes med materiale klasse A2-s1,d0 [ubrændbart materiale].

5.2.8 Brandsektionsvægges stabilitet under brand

Bestemmelsen i bygningsreglement 2015, kapitel 5.5, stk. 1, betyder bl.a., at branden bør forhindres i at passere en brandsektionsadskillelse.
En brandsektionsadskillelse kan i tilfælde af brand blive påvirket på den ene eller den anden side alt efter, hvor branden er opstået. For at en brandsektionsadskillelse under brand skal kunne medvirke til at hindre brandspredning, er det vigtigt, at den udføres, så den bevarer sin stabilitet, uanset fra hvilken side adskillelsen brandpåvirkes.

Nedenfor er givet et eksempel (pkt. 1 - 3) på, hvordan en brandsektionsvæg kan udføres, så den bevarer sin stabilitet, uanset fra hvilken side væggen brandpåvirkes.

1. Sammenbygningen i brandmæssig henseende er ikke ringere, end hvad der kræves for de enkelte sammenbyggede bygningsdele.

Dette indebærer, at tilslutningsdetaljerne udformes, så kravene til isolation, integritet og bæreevne er overholdt for sammenbygningen i 60 minutter. Eftervisning af, at punkt 1 er opfyldt, kan normalt foregå ved en brandteknisk bedømmelse ud fra de foreliggende tegninger eller ved en brandprøvning.

2. Brandsektionsvæggen fastholdes/understøttes, så væggen bliver støtende under 60 minutters standardbrand på den ene side af væggen, men ikke på begge sider samtidig.

Dette indebærer, at de bygningsdele, som under brand fastholder/understøtter brandsektionsvæggen, bør udformes, så de forbliver stabile og på plads under 60 minutters standardbrand på en af væggens sider. Der skal herunder tages højde for væggens og de tilgrænsende bygningsdeles temperaturbevægelser.

3. Brandsektionsvæggen bør dimensioneres, så den kan bære den last, som væggen i den konkrete situation har eller bliver påført bl.a. som følge af de tilgrænsende bygningsdeles temperaturdeformationer under en 60 minutters standardbrand.

For en bærende brandsektionsvæg indebærer det, at det ved dimensionering eftervises, at den samlede påførte last kan optages af væggen. Dimensioneringen skal udføres på grundlag af kap. 4 i bygningsreglementet.

Dette indebærer endvidere, at en ikke-bærende brandsektionsvæg bør sammenbygges med den overliggende etageadskillelse/tagkonstruktion, så de af en brand forårsagede temperaturdeformationer i etageadskillelsen/tagkonstruktionen kan ske, uden at væggen bliver påført en last fra etageadskillelsen/tagkonstruktionen.
Sammenbygningen bør derfor udformes, så der er mulighed for udvidelse, så temperaturdeformationerne kan optages, uden at væggen bliver belastet, og uden at sammenbygningens integritet forringes. For en etageadskillelse/tagkonstruktion af beton og/eller stål kan temperaturdeformationen (nedbøjningen) ofte sættes til 1/50 af etageadskillelsens/tagkonstruktionens spændvidde. For tilsvarende bygningsdele af træ kan nedbøjningen sættes til 1/100 af bygningsdelens spændvidde. Ved sammensatte konstruktioner bør spændvidden bestemmes for den samlede konstruktion.

5.2.9 Brandkam og brandkamserstatning (brandsektion)

For at reducere risikoen for horisontal brandspredning over tag fra én brandsektion til en anden, jf. bygningsreglement 2015, kapitel 5.5, stk. 1, kan brandsektionsvægge føres op over taget med en forsvarligt afdækket brandkam af samme konstruktion som den underliggende væg. Brandkammen bør have en sådan højde, at branden ikke kan springe over den. Ofte vil en højde på 0,3 m målt vinkelret på tagfladen kunne tilgodese dette.

Af hensyn til murede brandkammes holdbarhed er det mest hensigtsmæssigt, at de udføres med vandrette skifter.

Figur 5.6. Brandkam.

Som alternativ til en brandkam kan bygningen udføres med en brandkamserstatning, som er en sikring af tagkonstruktionen langs brandsektionsvæggen. Sikringen kan f.eks. udføres som en bygningsdel klasse EI 60 [BD-bygningsdel 60], der understøttes forsvarligt og fastgøres til væggen eller nærmeste spær.
Sikringen kan enten udføres langs begge sider af væggen eller langs den ene side af væggen. De bygningsdele, som bærer en dobbeltsidet brandkamserstatning, kan udføres uden hensyn til deres brandmodstands- evne. Hvis der udføres ensidig brandkamserstatning, er det nødvendigt at tage højde for, at brandkams-erstatningen ikke falder for tidligt ned i tilfælde af en brand inde i bygningen. Derfor kan det anbefales, at den ensidige brandkamserstatning udføres som bygningsdel klasse REI 60 [BD-bygningsdel 60], og at den del af tagkonstruktionen, der bærer den ensidige brandkamserstatning, udføres som bygningsdel klasse R 60 [BD-bygningsdel 60].

Figur 5.7. Brandkamserstatning.

I tabel 5.5 er der givet en række eksempler på, hvordan brandkam eller brandkamerstatning i særlige tilfælde kan udføres ved forskellige bygningsudformninger:
Tabell 5.5. Eksempler på udførelse af brandkamme og brandkamserstatninger.

<table>
<thead>
<tr>
<th>BYGNINGENS UDFORMNING</th>
<th>BRANDKAM</th>
<th>BRANDKAMSERSTATNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bygninger i 1 etage, hvor tagkonstruktionen ikke indeholder materialer, som er ringere end materiale klasse B-s1,d0 [klasse A materiale], bortset fra tagdækninger samt lægter og spær</td>
<td>Brandkam kan udelades. Væggen føres op i tæt forbindelse med undersiden af den yderste tagdækning</td>
<td>Brandkamserstatning kan udelades. Væggen føres op i tæt forbindelse med undersiden af den yderste tagdækning</td>
</tr>
<tr>
<td>Bygninger med tag med hældning højst 1:8 mod brandsektionsvæg</td>
<td>Brandkam med højde 0,3 m over tagfladen</td>
<td>Kan udføres i 1,0 m bredde langs begge sider af væggen</td>
</tr>
<tr>
<td>Bygninger med tag med hældning større end 1:8 mod brandsektionsvæg (se figur 5.8)</td>
<td>Brandkam så høj, at der opnås en vandret afstand på 2,5 m mellem toppen af brandkammen og tagfladen</td>
<td>Så bred, at der opnås en vandret afstand på 2,5 m fra brandkamserstatningens øverste punkt til brandsektionsvæggen på begge sider af væggen</td>
</tr>
<tr>
<td>Bygninger, hvor der ved brandsektionsadskillelsen er forskellig bygningshøjde (se figur 5.9)</td>
<td>Brandsektionsvæggen føres op over tag på den højere bygning og udføres uden åbninger i hele væggens højde til tagniveau for den højere bygning</td>
<td>Taget og tagets bærende konstruktion over den lavere bygning udføres som bygningsdel klasse REI 60 [BD-bygningsdel 60] uden åbninger inden for en afstand af 5,0 m fra den højere bygning</td>
</tr>
</tbody>
</table>
Figur 5.8. Bygninger med tag med hældning større end 1:8 mod brandsektionsvæg.
Figur 5.9. Bygninger, hvor der ved brandsektionsadskillelsen er forskellig bygningshøjde.

Da risikoen for en større brand i et trapperum eller en elevatorskakt er begrænset, medfører det normalt ikke en risiko, at disse brandsektionsvægge udføres uden en brandkam. For at være helt sikker på, at der ikke sker en brandspreadning, kan væggene føres helt op og i tæt forbindelse med undersiden af tagdækningen (den yderste tagdækning).

Det anbefales, at brandsektionsvægge, som ikke afsluttes med brandkam, føres helt op i tæt forbindelse med undersiden af tagdækningen (den yderste tagdækning). Hvis brandspreadning skal undgås, kan undertaget ikke føres over eller igennem brandsektionsadskillende vægge, da undertaget kan medvirke til at sprede branden. For at være sikker på, at der ikke kan ske en brandspreadning, er det for tagkonstruktioner, der indeholder et undertag, derfor vigtigt, at brandsektionsvæggen føres ubrødt gennem undertaget og videre op i tæt forbindelse med undersiden af tagdækningen (den yderste tagdækning), så undertaget bliver afbrudt.

5.2.10 Vandret brandspreadning
Som det fremgår af bygningsreglement 2015, kapitel 5.5, stk. 1, må en brand ikke sprede sig til andre brandmæssige enheder i den tid, der er nødvendig for evakuering. Det er derfor vigtigt at være opmærksom på,
at en brand også kan sprede sig vandret rundt om de brandadskillende vægge, f.eks. via ydervægsbeklædning, tagudhæng og lignende.

Det er derfor vigtigt, at brandadskillende vægge føres ud til indersiden af den udvendige beklædning, og at tagudhæng, altangangsoverdækninger mv., som passerer en brandadskillende væg, afbrydes eller på anden måde sikres ud for væggen.

Brandspredning via ydervæggen kan begrænses ved brandadskillelserne på den måde, at brandadskillelserne ved en ydervæg af materiale klasse A2-s1,d0 [ubrændbart materiale] sammenbygges med denne. Ved ydervægge af materialer, som ikke er materiale klasse A2-s1,d0 [ubrændbart materiale], kan det anbefales, at adskillelsen føres frem til indersiden af den udvendige beklædning.

Hvis der ved brandsektionsafgrænsende vægge er mulighed for vinkelsmitte, er det normalt nødvendigt at udføre ydervæggene som bygningsdel klasse EI 60 [BD-bygningsdel 60] uden åbninger, så vinkelsmitte ikke kan finde sted inden for en afstand af 2,5 m fra sektionsafgrænsningen. Mulighed for vinkelsmitte kan normalt anses for at være til stede, hvor vinklen mellem ydervæggene er mindre end 135°. De angivne 2,5 m kan måles enten langs en af facadelinierne eller på skrå over hjørnet.

Figur 5.10. Sammenbygning facade og brandadskillende bygningsdel.
5.3 Brandspredning til bygninger på anden grund

5.3.1 Afstand til skel, vej- og stimidte

Ifølge bygningsreglement 2015, kapitel 5.5.3, stk. 1, skal bygninger placeres i en sådan afstand fra naboskel, vej- eller stimidte eller udføres på en sådan måde, at det sikres, at der ikke sker en brandspredning til bygninger på anden grund.

Brandspredning til bygninger på anden grund kan forhindres ved, at bygningen holdes i en passende afstand fra skel i afhængighed af bygningsens overflader og tagdækning. Det kan også forhindres ved, at der mod skel udføres en brandadskillende bygningsdel.

Placeres bygningen i nedenstående afstande fra naboskel samt vej- og stimidte, vil der erfaringsmæssigt ikke være risiko for brandspredning.

Tabel 5.6. Eksempler på udførelse af Udvendige overflader.

<table>
<thead>
<tr>
<th>UDVENTDIGE OVERFLADER</th>
<th>AFSTAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beklædning klasse K, 10 B-s1,d0 [klasse 1 beklædning]</td>
<td>≥2.5 m</td>
</tr>
<tr>
<td>Ringere end beklædning klasse K, 10 B-s1,d0 [klasse 1 beklædning]</td>
<td>≥5.0 m</td>
</tr>
</tbody>
</table>

En brandmæssig afstand måles normalt vandret uden hensyn til terræn-forskelle. Afstanden er den mindste frie afstand mellem en bygning og f.eks. et naboskel. De i tabel 5.6 angivne afstande angår kun bygningens ydervæg mod f.eks. et naboskel. For tagudhæng, vindskeder, lætage over døre, gesimser og lignende bygningsdele kan de angivne afstande normalt nedsættes efter en konkret vurdering.

En bygning med tagdækning, som ikke opfylder kravene til tagdækning klasse B_{koo}(t2) [klasse T tagdækning], bør placeres med en afstand på mindst 10,0 m til skel, vej- og stimidte.
Figur 5.11. Afstande til skel.
5.3.2 Brandvæg, brandkam og brandkamserstatning

Det fremgår af bygningsreglement 2015, kapitel 5.5.3, stk. 1, at bygninger skal placeres i en sådan afstand fra skel, vej- eller stimidte eller udføres på en sådan måde, at der ikke sker brandspredning til bygninger på anden grund.

Hvis en bygning opføres nærmere naboskel, vej- eller stimidte end 2,5 m, vil det normalt være nødvendigt, at den udføres med brandvæg mod naboskel, vej eller sti for derved at sikre, at der ikke sker brandspredning til anden grund, jf. bygningsreglement 2015, kapitel 5.5.3, stk. 1.

En brandvæg kan f.eks. udføres som bygningsdel klasse REI 120 A2-s1,d0 [BS-bygningsdel 120]. Ligesom for brandsektionsvægge er det vigtigt, at en brandvæg under brand bevarer sin stabilitet, uanset fra hvilken side væggen brandpåvirkes.

Bygningsdele og installationer kan ikke indbygges i eller gennembrude en brandvæg, uden at der herved tages højde for, at væggens brandmodstandsevne og stabilitet ikke forringes. Taglægter kan dog føres ubrudt igennem brandvæggen uden brandkam, når mellemrummet mellem lægterne udfyldes med materiale klasse A2-s1,d0 [ubrændbart materiale].

En brand må ikke kunne sprede sig over en brandvæg, da brandvæggen derved ikke opfylder sin funktion. Dette kan hindres ved, at væggen f. eks. udføres med enten brandkam eller brandkamserstatning, som det f.eks. er beskrevet for brandsektionsvægge i afsnit 5.2.9. I tabel 5.7 er givet yderligere eksempler på, hvordan brandkam og brandkamserstatning kan udføres.

<table>
<thead>
<tr>
<th>BYGNINGENS PLACERING</th>
<th>BRANDKAM</th>
<th>BRANDKAMSERSTATNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taget på en bygning, som er nærmere naboskel, vej- eller stimidte end 2,5 m og med hældning større end 1:8 mod skel, vej eller sti</td>
<td>Så høj, at der opnås en afstand på 2,5 m fra skellet til tagfladen, når der måles vandret over toppen af brandkammen</td>
<td>Så bred, at der opnås en afstand på 2,5 m fra skellet til tagfladen, når der måles vandret fra brandkamserstatningens øverste punkt. Brandkamserstatningen bør udføres som bygningsdel klasse REI 60 [BD-bygningsdel 60], hvilket også omfatter den del af tagkonstruktionen, der bærer brandkamserstatningen</td>
</tr>
</tbody>
</table>

Tabel 5.7. Eksempel på udførelse af brandkam og brandkamserstatning ved skel.
En brandvæg kan opføres i skel som en fælles brandvæg. Når en brandvæg opføres i skel, vil det normalt være nødvendigt at sikre, at den ikke helt eller delvist fjernes af nogen af ejerne, og at der ikke foretages bygningsmæssig ændring ved den, uden at ejerne er enige herom. Dette kan f.eks. ske ved, at betingelserne for den fælles brandvæg tinglyses på de pågældende ejendomme.

5.3.3 Vandret brandspredning/vinkelsmitte

Som det fremgår af bygningsreglement 2015, kapitel 5.5.3, stk. 1, må der ikke ske brandspredning til bygninger på anden grund. Hvis der ved en brandvæg er mulighed for vinkelsmitte, er det derfor vigtigt, at ydervæggene f.eks. udføres som bygningsdel klasse EI 60 A2-s1,d0 [BS-bygningsdel 60] uden åbninger, så vinkelsmitte ikke kan finde sted inden for en afstand af 2,5 m fra brandvæggen. Mulighed for vinkelsmitte antages at være til stede, hvor vinklen mellem ydervæggene er mindre end 135°. De angivne 2,5 m kan måles enten langs en af facadelinierne eller på skrå over hjørnet.
Indvendig brandsektionsvæg

Mindst 2,5 m

Højst 135°

Figur 5.13. Vandret vinkelsmitte.
6 Redningsberedskabets indsatsmulighed

Ifølge bygningsreglement 2015, kapitel 5.6, stk. 1, skal bygninger placeres og udformes på en sådan måde, at redningsberedskabet har mulighed for redning af personer og for slukningsarbejdet.

Det afhænger af bygningens placering, udformning og anvendelse, hvilket udstyr der er nødvendigt for slukning og redning.

For enfamiliehuse, helt eller delvist sammenbyggede enfamiliehuse, sommerhuse og campinghytter samt dertil hørende små-bygninger henvises der til afsnit 7.11.

For industri- og lagerbygninger i én etage henvises der til afsnit 9.6.

6.1 Adgangs- og tilkørselsforhold

Ifølge bygningsreglement 2015, kapitel 5.6.1, stk. 1 og 2, skal redningsberedskabets materiel kunne fores frem til enhver dør til terræn i det fri. På grund af motorkøretøjernes størrelse og slangernes længde vil dette normalt kunne ske, hvis der er under 40 m målt i ganglinien fra dørene i bygningen til en tilstrækkelig bred befestet kørevej. En kørevej bør normalt være mindst 2,8 m bred og befestet til tung trafik svarende til brandredningskøretøjer.

Figur 6.1. Eksempler på brandredningsareal for redningsberedskabet.
Såfremt bygningen er forsynet med stigrør, bør der etableres adgangsvej (brandvej) frem til højst 10 m fra stigrørstilslutninger, så redningsberedskabet kan forsyne stigrøret med slukningsvand fra køretøjerne.

Det fremgår endvidere af bygningsreglement 2015, kapitel 5.6.1, stk. 2 og 3, at redningsberedskabets stiger skal kunne føres frem til redningsåbningerne. Hvis redningsberedskabet skal have adgang til redningsåbninger i f.eks. en indeliggende gård, kan redningsberedskabets adgang hertil f.eks. ske gennem port, passage eller lignende, der er udført som en selvstændig brandsektion.

![Højst 22 m til overkant gulv i øverste etage](image)

Figur 6.2. Eksempler på stigerejsning.

Redningsberedskabets kørbare stiger skal kunne anvendes, når underkant af redningsåbninger er mere end 10,8 m over terræn, og der ikke er sikkerhedstrapper i bygningen. De kørbare stiger er meget bredde og tunge. For at redningsberedskabets køretøjer kan komme frem uden at køre fast, er det vigtigt, at adgangsvejen (brandredningsarealet) er tilstrækkelig bred og befestet. Ved udformning af et brandredningsareal er det vigtigt, at der bl.a. tages stilling til arealets befestelse, plads til støtteben, hældning samt placering i forhold til bygningen med henblik på at sikre de bedst mulige arbejdsbetingelser for redningsberedskabets stiger. Normalt vil det være tilstrækkeligt, at der er udlagt et 4,0 m bredt befestet areal til brandredningskøretøjer. Ved udformning og placering af brandredningsarealet bør der tages hensyn til hældning af stigen, altraner, karnapper, tagudhæng m.m. Et brandredningsareal, der fremtræder tydeligt som kørevej, vil medvirke til at sikre en hurtig redningsindsats.
Hvis en bygning opføres, så overkant af gulv i øverste etage er mere end 9,6 m over terræn, og adgang til trappe foregår ad altangang, vil det for at sikre en forsvarlig redningsindsats ofte være nødvendigt, at der som minimum er mulighed for rejsning af redningsberedskabets stiger til enderne af altangangen.

Hvis redningsberedskabet skal have mulighed for uhindret at komme frem til bygningen, må spærreboomme, porte eller lignende anbragt i adgangsarealerne kun forsynes med lås efter nærmere aftale med kommunalbestyrelsen.

6.2 Røgudluftning

6.2.1 Trapperum
Mulighederne for røgudluftning i trapperum kan f.eks. sikres ved, at der for hver etage er et let tilgængeligt og oplukkeligt vindue eller ved, at der foroven i trapperummet placeres en røglem.

Vinduernes størrelse har betydning for deres evne til at ventilere rummet, og normalt vil det være tilstrækkeligt, at vinduerne har en højde og en bredde omkring 0,5 m.

På tilsvarende vis vil røglemmens størrelse have indflydelse på, hvor hurtigt røgen kan udluftes. En røglem, som er udført som en manuelt oplukkelig lem, og hvor åbningsmekanismerne til enhver tid let kan betjenes fra trapperummet indgangsetage ved et greb anbragt på et iøjnefaldende sted og afmærket med tydelig påskrift ”Røglem”, vil normalt kunne sikre en acceptabel røgudluftning, såfremt det sikres, at både røglem og aktiveringsmekanisme er funktionsdygtige efter en brand i bygningen. Det vil være tilstrækkeligt, hvis røglemmen har et geometrisk frit åbningsareal på mindst 1,0 m².

6.2.2 Kældre, tagrum og øvrige rum
For at sikre tilfredsstillende mulighed for røgudluftning af kældre og tagrum kan der i disse etager udføres vinduer eller andre åbninger mod det fri. Dette kan også være relevant i forbindelse med tagrum, med tagkonstruktioner, hvor det kan være vanskeligt for redningsberedskabet at etablere røgudluftning. Lysningsarealet af vinduerne mv. kan f.eks. svare til 0,5 pct. af rummets etageareal. Indeliggende rum, der ikke har vinduer, kan om muligt udluftes via taglemme eller lignende med et tilsvarende åbningsareal. Det vil sædvanligvis være tilstrækkeligt, at der røgudluftes gennem naborum. Røgudluftningen kan dog ikke foregå via
eventuelle flugtveje i det tidsrum, hvor flugtvejene skal være passable. Røgudluftningen kan også være mekanisk med et luftskifte på mindst 6 gange i timen.

Figur 6.3. Eksempel på røgudluftning af kælder.

Små rum med lav brandbelastning, f.eks. toiletter og ventilationsrum, kan udføres uden mulighed for røgudluftning.

Da røgudluftningen etableres af hensyn til redningsberedskabets indsatsmulighed, er der ikke tale om et egentligt brandventilationsanlæg, og det er derfor ikke nødvendigt, at lemme, installationer m.v. udføres i overensstemmelse med DS/EN 12101. Det bør dog sikres, at røgudluftningen er funktionsdygtig også efter brandpåvirkning.

Anvendes mekanisk røgudluftning bør det derfor sikres, at strømforsyningen til udluftningsanlægget ikke berøres af en brand i det/de rum, som anlægget betjener. Spjæld og andre komponenter, der er nødvendige for funktionen af anlægget, bør være funktionsdygtige ved/efter brand i det/de rum, som anlægget betjener.

Forhold der normalt bør tilgodeses ved udførslen af mekanisk røgudluftningsanlæg:

- Der bør efter nærmere aftale med kommunalbestyrelsen opsættes betjeningspanel til aktivering af anlægget.
- Anvendes komfortventilationsanlæg som røgudluftningsanlæg, bør
det sikres, at anlægget kan overstyres, såfremt anlægget ellers stand-
ses ved varmedetektering.
• Der bør anvendes brandsikre kabler i rum, som anlægget betjener.
• Styringsbokse m.m. til spjæld bør som hovedregel brandbeskyttet, så
der opnås en sikkerhed svarende til anvendelse af brandsikre kabler.
• Kortslutning på øvrige el-installationer må ikke hindre funktionen af
røgudluftningsanlægget.

Ventilationsanlæg, der er placeret i egen brandsektion uden oplag, og
som automatisk lukker i tilfælde af brand, kan anvendes, uden at funk-
tionen under brand dokumenteres.

6.3 Slukningsmulighed

6.3.1 Stigrør
I bygninger, hvor redningsberedskabets slanger kun vanskeligt kan
fremføres til alle steder i bygningen, er det nødvendigt på anden måde at
sikre en hurtig og tilstrækkelig vandforsyning. Dette kan f.eks. ske ved,
at der etableres mulighed for tilslutning af slangerne til stigrør i trap-
perummene.

Normalt vil det ikke være muligt at fremføre vand i bygninger, hvor gul-
vet i øverste etage er mere end 22 m over terræn samt i bygninger, hvor
trapperummet udføres med en lysningsbredde, som er mindre end 0,2
m. Hvor trapperum til flugtvejstrapper er udført med let tilgængelige
sidelysvinduer for hver trapperepos, og gulv i øverste etage er højst 22 m
over terræn, kan lysning på trappe dog udelades, såfremt redningsbered-
skabet har mulighed for at foretage udvendig ophaling af slanger.

Bygningsafsnit i bygninger med gulv i øverste etage på mere end 22 m
over terræn og under 45 m bør udføres med stigrør. Der kan i nogle
tilfælde være behov for en trykforøgerpumpe afhængigt af redningsbe-
redskabets udstyr.
Ved installation af stigrør i en bygning er det vigtigt at sikre, at redningsberedskabets udstyr kan anvendes i forbindelse med stigrøret. Dette vil normalt være tilfældet, hvis stigrøret udføres af 80 mm stålrør med storzkoblinger, B-kobling ved tilslutning ved terræn i det fri og C-kobling ved tilslutning på etagerne. Stigrør forsynes for hver etage med afgreninger med afspæringsventiler. For at redningsberedskabet kan foretage en tilslutning til stigrøret i sikre omgivelser, er det hensigtsmæssigt, at tilslutningen på etagerne er placeret på trapperepos, i forrum eller lignende rum. For at redningsberedskabet let kan finde stigrøret, kan der ved B-koblingerne anbringes et tydeligt skilt med påskriften “Stigrør“. Indløbet til stigrøret placeres mest hensigtsmæssigt ved redningsberedskabets indsatsvæje.

Storzkoblingerne kan udføres som angivet i DS 752 A-, B- og C-fastkoblinger med metallisk pakflade, og dækslerne kan udføres som angivet i DS 757 A-, B- og C-slutdæksler med gummipakning. Alle dæksler udføres med et 2 mm aflastningshul af hensyn til muligheden for at kunne trykudligne systemet.

Stigrør, herunder afgreninger på etagerne, bør udføres, så de kan tømmes for vand ved aftapning gennem B-koblingen eller en bundaftapningsventil. Fra bundaftapningsventilen er det hensigtsmæssigt, at der fores en fast rørledning til gulvafløb eller lignende.
6.3.2 Markering af brandvægge og brandsektionsadskillelser

For at sikre en hurtig og effektiv indsats fra redningsberedskabet er det vigtigt, at der kan ske en hurtig identificering af, hvor brandvægge og brandsektionsadskillelser er placeret. Såfremt bygningen er udført med brandkamserstatning eller uden brandkam, kan det være vanskeligt ud fra bygningens ydre at fastslå, hvor væggene er placeret. Hvis væggenes placering ikke fremgår af bygningens ydre, kan væggene i stedet markeres med sikkerhedsskilte eller lignende i et sådant omfang, at redningsberedskabet hurtigt kan identificere væggenes placering. Tilsvarende er aktuelt for vandrette brandsektionsadskillelser, som er udformet eller placeret atypisk.

6.4 Evakuering fra bygninger, hvor mange personer har nedsat mobilitet

Eksempelsamling om brandsikring af byggeri
7 Enfamiliehuse, helt eller delvist sammenbyggede enfamiliehuse, sommerhuse og campinghytter samt dertil hørende småbygninger

7.1 Generelt
Dette afsnit indeholder supplerende eksempler på, hvorledes fritliggende enfamiliehuse, helt eller delvist sammenbyggede enfamiliehuse, sommerhuse og campinghytter samt dertil hørende småbygninger kan opføres, så de opfylder de overordnede funktionskrav om brandsikkerhed i bygningsreglement 2015.

Helt eller delvist sammenbyggede enfamiliehuse omfatter dobbelthuse, rækkehuse, kædehuse og lignende.

Ved opførelse af enfamiliehuse, der udformes eller skal anvendes på en måde, som ikke kan sidestilles med sædvanlig boligmæssig udformning og udnyttelse, kan eksemplerne i dette afsnit ikke anvendes. Eksempler herpå kan være enfamiliehuse med mere end 2 etager og kælder, enfamiliehuse med fælles adgangsparti, samt enfamiliehuse, der indrettes til beboere med funktionsnedsættelser (handicappede).

Afsnittet omfatter også enfamiliehuse, hvor en del af huset anvendes til erhverv, der sædvanligvis udføres i forbindelse med en bolig, som f.eks. frisør, ejendoms-, advokat-, revisor- og arkitektvirksomhed og lignende liberale erhverv samt dagpleje og lignende. Stuehuse ved landbrugsejendomme er normalt enfamiliehuse.

Afsnittet omfatter altså følgende typer bygninger:

• huse med én bolig til helårsbeboelse, enten som fritliggende enfamiliehuse eller som helt eller delvist sammenbyggede enfamiliehuse (dobbelthuse, rækkehuse, kædehuse, gruppehuse og lignende),
• huse med én bolig til helårsbeboelse, som er helt eller delvist sam-
menbygget med etageboligbygninger, erhvervsbygninger eller institutionsbygninger,

* sommerhuse og campinghytter samt
* mindre sekundære bygninger, der opføres i forbindelse med enfamiliehuse, såsom garager, carporte, udhuse, drivhuse og lignende mindre bygninger.

7.2 Anvendelseskategori

Fritliggende enfamiliehuse, helt eller delvist sammenbyggede enfamiliehuse, summerhuse, campinghytter og tilsvarende vil ofte være omfattet af anvendelseskategori 4. Kendetegnet for disse bygninger er, at de er indrettet til natophold, hvor alle personer, som normalt opholder sig i bygningen, har kendskab til flugtveje og redningsforhold og ved egen hjælp er i stand til at bringe sig i sikkerhed.

Indrettes enfamiliehuse til ældreboliger eller tilsvarende, er bebyggelsen ikke omfattet af anvendelseskategori 4 og dermed af dette afsnit. Denne type bygninger er som udgangspunkt omfattet af de almene krav for bygningsafsnit, hvor personerne ikke er i stand til ved egen hjælp at bringe sig i sikkerhed, det vil sige anvendelseskategori 6.

Mindre sekundære bygninger, der opføres i forbindelse med et enfamiliehus såsom garager, carporte, udhuse, drivhuse og lignende mindre bygninger, vil oftest være omfattet af anvendelseskategori 1 og kan behandles som angivet i dette afsnit.

I enfamiliehuse med integreret garage, carport eller uduhus regnes garage, carport og udhus at være en del af enfamiliehuset og ikke en selvstændig bygning. Garage, carport og udhus anses for at være integreret i et enfamiliehus, når de ligger under samme tagkonstruktion som enfamiliehuset.

7.3 Flugtveje og redningsforhold

Som udgangspunkt er der ikke flugtveje i enfamiliehuse mv., da der oftest er tale om én brandmæssig enhed.

Eftersom der som udgangspunkt ikke er flugtveje i enfamiliehuse, skal dørbredder i enfamiliehuse blot opfylde kravene i bygningsreglement 2015, kapitel 3.2.
7.4 Redningsåbninger

Beboelsesrum og køkken i selvstændigt rum bør udføres med redningsåbning enten som vindue, dør eller lem direkte til det fri. Hvis der fra et rum er redningsmulighed gennem 2 af hinanden uafhængige naborum, kan redningsåbning i det pågældende rum udelades. Principippet kan for eksempel anvendes i forbindelse med opsætning af en udestue foran en redningsåbning.

![Figur 7.1. Adgang til redningsåbning via naborum.](image)

Placeringen af karnapper, udestuer og lignende må ikke hindre redningsberedskabets mulighed for adgang til redningsåbningerne. Dette er f.eks. opfyldt, hvis det er muligt at nå redningsåbninger, der ligger over karnapper, udestuer og lignende med en brandstige eller ved, at taget over karnapper, udestuer og lignende udføres trædefast.

Redningsåbninger kan udformes som beskrevet i afsnit 2.7.2.

7.5 Konstruktive forhold

Bærende bygningsdele omfatter blandt andet vægge, søjler, bjælker, etageadskillelser, og lignende konstruktioner.

Med hensyn til klassifikation af byggevarer og bygningsdele henvises til afsnit 3.1.

7.6 Bærende bygningsdele

For fritliggende enfamiliehuse, helt eller delvist sammenbyggede enfamiliehuse, sommerhuse og campinghytter i 1 etage anses funktionskra-
vet opfyldt, når de bærende vægge, søjler, bjælker og lignende konstruktioner udføres mindst som bygningsdel klasse R 30 [BD-bygningsdel 30], og etageadskillelserne udføres mindst som bygningsdel klasse R 30 [BD-bygningsdel 30].

I fritliggende enfamiliehuse, helt eller delvist sammenbyggede enfamiliehuse, sommerhuse, og campinghytter med 2 etager og kælder anses funktionskravet opfyldt, når de bærende konstruktioner i kælderen udføres mindst som bygningsdel klasse R 60 [BD-bygningsdel 60], og etageadskillelsen over kælderen udføres mindst som bygningsdel klasse R 60 [BD-bygningsdel 60],

Der stilles ikke krav til brandmodstandsevnen for tagkonstruktionen, men alene til de bygningsdele, som bærer tagkonstruktionen. Hvis tagrummet kan udnøttes, stilles der krav til brandmodstandsevnen for de bygningsdele, som bærer tagkonstruktionen, men der stilles ikke krav til brandmodstandsevnen for spærrene i et uudnytteligt tagrum. Såfremt tagkonstruktionen er en del af det bærende system og har indflydelse på bygningens afstivende system over for vandrette laster eller på andre bærende eller ikke-bærende bygningsdeles brandmodstandsevne, kan der stilles krav til tagkonstruktionens brandmodstandsevne.

7.7 Brandtekniske installationer
Der henvises til afsnit 4.1 og 4.2.

7.8 Brand- og røgspredning

7.8.1 Brand- og røgspredning i den bygning, hvor branden opstår

Indvendige overflader
Indvendige overflader skal udføres på en sådan måde, at de ikke bidrager væsentligt til brand- og røgudvikling i den tid, som personer, der opholder sig i rummet, skal bruge for at bringe sig i sikkerhed.

Af hensyn til brand- og røgspredning i den bygning, hvor branden opstår, bør de indvendige væg- og loftoverflader i enfamiliehuse mv. udføres mindst som beklædning klasse K₁₀ D-s₂,d₂ [klasse 2 beklædning].

Mod tagrum, der ikke kan udnøttes, kan vægge og loftkonstruktioner udføres mindst som beklædning klasse K₁₀ D-s₂,d₂ [klasse 2 beklæd-
ning] med mindst 50 mm isolering af mindst materiale klasse D-s2,d2 [klasse B materiale].

Mod stråtag bør vægge og loftkonstruktioner omkring beboelsesrum udføres mindst som bygningsdel klasse REI 30 [BD-bygningsdel 30].

Brandmæssig opdeling

I bygninger med 2 etager og kælder bør etageadskillelsen over kælderen udføres mindst som bygningsdel klasse REI 60 [BD-bygningsdel 60]. Trappe mellem kælder og stueetage bør adskilles fra kælder eller stueetage med bygningsdel mindst som bygningsdel klasse EI 60 [BD-bygningsdel 60] og med dør mindst som dør klasse EI 30-C [BD-dør 30].

![Figur 7.2. På skitsen til venstre er vist, hvorledes adskillelsen mod kælder kan ske i stueetagen og på skitsen til højre, hvorledes adskillelsen kan ske i kælderen. Den brandmæssige adskillelse er vist med blåt.](image)

Enhver gennemføring i brandklassificerede bygningsdele skal udføres, så bygningsdelenes brandmæssige egenskaber ikke forringes.

7.9 Brand- og røgspredning til andre bygninger på samme grund eller anden grund

Afstande måles vandret uden hensyntagen til eventuelle terrænforskelle. Den angivne afstand er den mindste fri afstand mellem bygning og naboskel, vej- og stimidte. De beskrevne afstande kan for tagudhæng, vindskeder, lætage over døre, gesimser og lignende mindre bygningsdele normalt nedsættes på baggrund af en konkret vurdering. Ofte vil det for enfamiliehuse være relevant at nedsætte afstanden med 0,5 meter.
Udvendige vægoverflader

Af hensyn til brand- og røgspredning i den bygning, hvor branden opstår og til bygninger på samme grund og på anden grund, bør de udvendige overflader på ydervægge udføres mindst som beklædning klasse K, 10 D-s2, d2 [klasse 2 beklædning]. Alternativt hertil kan ydervægge udføres med udvendig overflade klasse D-s2, d2.

Uden på en ydervæg med udvendig overflade mindst som beklædning-klasse K, 10 B-s1, d0 [klasse 1 beklædning] kan anbringes en regnskærm med bagvedliggende hulrum. Regnskærmen (inklusiv ophængnings-systemet) bør udføres mindst som materiale klasse D-s2, d2 [klasse B materiale].

![Figur 7.3. Eksempel på regnskærm.](image)

Tagdækninger

Tagdækninger bør udføres som tagdækning klasse B_{ROOF} (t2) [klasse T tagdækning]. Karnapper, udestuer og lignende mindre bygningsdele kan dog udføres med transparente tagelementer klasse E-d2. Et transparent tagelement kan f.eks. være et ovenlys.

Tagdækning af strå (stråtag) opfylder ikke kravene til tagdækning klasse B_{ROOF} (t2) [klasse T tagdækning]. Stråtage eller andre tagdækninger, som ikke er tagdækning klasse B_{ROOF} (t2) [klasse T tagdækning], kan dog anvendes, hvis enfamiliehuset mv. overholder nedenstående afstande.

Afstand mellem bygning med tagdækning klasse B_{ROOF} (t2) [klasse T tagdækning] og bygning med tagdækning, der ikke er en tagdækning klasse B_{ROOF} (t2) [klasse T tagdækning], bør mindst være 12,5 meter.
Afstand mellem to bygninger, der ikke har tagdækning klasse B_{\text{ROOF}} (t2) [klasse T tagdækning]), bør tilsvarende mindst være 20,0 meter.

Figur 7.4. Afstanden mellem enfamiliehuse på samme grund, hvis et eller flere af bygningerne har tagdækning, som ikke er tagdækning klasse B_{\text{ROOF}} (t2) [klasse T tagdækning].

Over døre og andre redningsåbninger skal stråtage sikres mod nedskridning ved brand.

Særlige forhold ved sammenbyggede enfamiliehuse

Vandret brandspredning

I brandmæssig henseende betragtes enfamiliehuse som sammenbyggede, når de ligger med mindre indbyrdes afstand end 5,0 meter. Bygninger adskilles brandmæssigt på en sådan måde, at adskillelsen svarer til den brandmæssige adskillelse, som opnås i forbindelse med tilsvarende bygninger, der er placeret for tæt på skel på udmatrikulerede grunde.

Det vil sige, at bygninger på samme grund, der ligger i mindre indbyrdes afstand end 5,0 meter, bør adskilles med bygningsdel klasse REI 60 [BD-bygningsdel 60] uden åbninger, og adskillelsen bør slutte tæt til undersiden af den yderste tagdækning. Ved ydervægge, der ikke er udført af mindst materiale klasse B-s1,d0 [klasse A materiale], bør den brandadskillende bygningsdel mindst føres frem til indersiden af den udvendige beklædning.
Figur 7.5. Tegningen viser, hvorledes den brandadskillende bygningsdel kan føres frem til indersiden af den udvendige beklædning.

For hver 1.200 m² bruttoetageareal bør adskillelsen udføres med bygningsdel mindst som bygningsdel klasse REI 60 A2-s1,d0 [BS-bygningsdel 60]. Adskillelsen bør slutte tæt til den yderste tagdækning. Ved ydervægge, der indeholder materialer, som ikke er mindst materialeg klasse B-s1,d0 [klasse A materiale], skal den brandadskillende bygningsdel mindst føres frem til indersiden af den udvendige beklædning.

Ved bygninger med tagudhæng henledes opmærksomheden på, at branden ikke må kunne sprede sig uden om den brandadskillende bygningsdel via tagudhænget.

Danner to enfamiliehuse, som er placeret mindre end 2,5 meter fra hinanden, en vinkel, der er mindre end 135°, eller er placeret forskudt fra hinanden, bør det sikres, at der inden for en afstand på 2,5 meter ikke sker vandret brandspredning mellem de to enfamiliehuse.

Sikring mod vandret brandspredning skal inden for afstanden på 2,5 meter udføres med bygningsdel klasse REI 60 [BD-bygningsdel 60] uden åbninger, som slutter tæt til undersiden af den yderste tagdækning.

Når vinklen mellem de to ydervægge er større end 135°, stilles der ingen krav til ydervæggernes brandmodstandsevne som følge af risiko for vandret brandspredning.

Hvis afstanden a mellem bygningerne er mindre end 2,5 meter, kan det være nødvendigt at sikre yderligere langs ydervæggene.
Et enfamiliehus, som sammenbygges med eller ligger i en afstand mindre end 5,0 meter fra en bygning, der ikke er omfattet af dette afsnit, bør adskilles herfra med bygningsdele mindst som bygningsdel klasse REI 60 A2-s1,d0 [BS-bygningsdel 60]. Adskillelsen bør slutte tæt til den yderste tagdækning. Ved ydervegge, der ikke er udført af mindst materiale klasse B-s1,d0 [klasse A materiale], bør den brandadskillende bygningsdel mindst føres frem til indersiden af den udvendige beklædning. Dette omfatter f.eks. også stuehuse, der sammenbygges med avls- og driftsbygninger.

Sammenbyggede enfamiliehuse kan udføres med stråtag, men der bør i disse tilfælde umiddelbart under stråtaget være indbygget en bygningsdel klasse EI 30 [BD-bygningsdel 30]. Ethvert hulrum mellem undersiden af stråtaget og oversiden af den foran nævnte bygningsdel bør intet sted have en højde, som er større end 100 mm, og hulrummet bør være lukket langs alle kanter af tagfladerne, således at en brand ikke kan sprede sig til hulrummet fra tagfladernes kanter. Lukningerne langs tagfladernes kanter bør udføres med materiale klasse A2-s1,d0 [ubrændbart materiale].

Hulrum mellem stråtaget og oversiden af den foran nævnte bygningsdel bør ikke passere bygningens brandcelleafgrænsende bygningsdele. På disse steder, bør der udføres brandstop som beskrevet i afsnit 3.4.
7.10 Brandspredning til bygninger på anden grund
Ligger enfamiliehuset nærmere naboskel eller stimidte end 2,5 meter, bør ydervæggen mod skel udføres mindst som bygningsdel klasse EI 60 [BD-bygningsdel 60] og slutte tæt til den yderste tagdækning.

Et enfamiliehus med tagdækning, som ikke opfylder kravene til tagdækning klasse B_{\text{ROOF}}(t2) [klasse T tagdækning], bør placeres med en afstand på mindst 10,0 meter til skel, vej- og stimidte.

Afstanden til skel kan for fritliggende enfamiliehuse, sommerhuse, campinghytter og dertilhørende småbygninger reduceres til mindst 5 m, såfremt stråtaget er brandsikret på følgende vis. Stråtaget er udført af traditionelle tagrør og tækket direkte, uden bagvedliggende hulrum, på en bagvedliggende bygningsdel klasse EI 30 [BD-bygningsdel 30] udført af materiale klasse D-s2,d2 [klasse B materiale]. Tagdækningen af strå fastgøres til underliggende bygningsdel med ubrændbart materiale.

7.11 Redningsberedskabets indsatsmulighed
For enfamiliehuse anses kravet i bygningsreglement 2015, kapitel 5.6, opfyldt, når der er befæstet vej i mindst 2,8 meter bredde, så redningsberedskabet kan køre frem med slukningsmateriel til højst 40 meter fra hvert hus.

Arealer beregnet til fremføring af redningsberedskabets køretøjer bør udføres synlige, og der bør ved planlægningen tages hensyn til køretøjernes drejeradius.

7.12 Særlige forhold ved garager, carporte, udhuse og lignende mindre bygninger i forbindelse med fritliggende enfamiliehuse, helt eller delvist sammenbyggede enfamiliehuse, sommerhuse og campinghytter
Eksemplerne i dette afsnit omfatter garager, carporte, udhuse og lignende mindre bygninger i tilknytning til enfamiliehuse og sommerhuse.

Tagdækninger
Bygningerne bør udføres med tagdækning klasse B_{\text{ROOF}}(t2) [klasse T tagdækning] eller med transparente tagelementer klasse E-d2.
Bygninger med tagdækning, som ikke er tagdækning klasse B\textsubscript{ROOF}(t2) [klasse T tagdækning] eller transparente tagelementer klasse E-d2, bør holdes i en afstand af 10 meter fra naboskel, vej- og stimidte samt andre bygninger på samme grund.

Brandforhold i forbindelse med skel
Nedenstående eksempler har til formål at forhindre, at der på en grund bliver en sammenhængende bebyggelse over skel, uden at bygningerne på grunden adskilles brandmæssigt.

For garager, carporte, udhuse, drivhuse, overdækkede terrasser m.v., der anbringes i skel eller nærmere skel end 2,5 meter, vil funktionskravet normalt være opfyldt, når de:

- enten ligger mindst 2,5 meter fra andre bygninger inde på grunden
- eller udføres med væg mod skellet mindst som bygningsdel klasse EI 60 [BD-bygningsdel 60].

![Diagram](image)

Figur 7.7. Adskillelse mod skel.

Hvis afstanden mellem bolig og udhus er mindre end 2,5 meter, bør udhuset udføres med væg mod skel mindst som bygningsdel klasse EI 60 [BD-bygningsdel 60].

I summerhusområder må garager, carporte, udhuse og lignende mindre bygninger ikke opføres nærmere skel mod nabo eller sti end 2,5 meter.
Garage, carport, udhus, drivhus og overdækkede terrasser kan dog i forbindelse med et af skellene placeres nærmere enfamiliehuset end 2,5 meter – eventuelt sammenbygges – uden særlige brandmæssige foranstaltninger imod skel.

Er ovennævnte bygning en garage eller et udhus, som sammenbygges eller ligger nærmere end 1,0 meter fra enfamiliehuset, kan bygningerne dog adskillnes fra enfamiliehuset med bygningsdele udført mindst som bygningsdel klasse EI 30 [BD-bygningsdel 30]. Bygningsdelen skal føres op i tæt forbindelse med den yderste tagdækning. Eventuel dør bør udføres mindst som dør klasse EI 230-C [BD-dør 30].

Figur 7.8. Bygninger mod ét skel.

I forbindelse med sammenbyggede enfamiliehuse bør garager, carporte, udhuse og lignende mindre bygninger, når de ligger i en afstand af mindre end 5,0 meter fra enfamiliehuset, udføres med væg mod skel mindst som bygningsdel klasse EI 60 [BD-bygningsdel 60]. Væggen skal slutte tæt til den yderste tagdækning. Er der kun bygninger mod ét skel, kan der ses bort fra dette.

Når garager, carporte, udhuse og lignende mindre bygninger opføres i tilknytning til enfamiliehuse, der ligger på samme matrikel, skal der tages hensyn til risikoen for brandspredning mellem bygningerne.
7.13 Særlige forhold ved integrerede garager, carporte og udhuse mv.

En integreret carport, garage mv. bør udføres med overflader på vægge og lofter mindst som beklædning klasse K_1 10 D-s2, d2 [klasse 2 beklædning]. Ydervægge, bærende vægge, søjler, bjælker, etageadskillelser og lignende bygningsdele bør udføres mindst som bygningsdel klasse EI 30 [BD-bygningsdel 30]. Mod tagrum, der ikke kan udnyttes, bør vægge og loftskonstruktioner udføres som beklædning klasse K_1 10 D-s2, d2 [klasse 2 beklædning] med isolering mindst som materiale klasse D-s2, d2 [klasse B materiale].

Enfamiliehuse med integrerede carporte, garager mv., som er nærmere skel end 2,5 meter.

Enfamiliehuse incl. garage, carport mv. bør udføres med ydervægge mod skel mindst som bygningsdel klasse EI 60 [BD-bygningsdel 60], der slutter tæt til den yderste tagdækning.

Hvis der kun bygges mod ét skel, kan garage, carport mv. brandmæssigt adskilles i forhold til enfamiliehuset i stedet for adskillelsen mod skel. Dette kan f.eks. ske ved, at enfamiliehuset adskilles fra garagen, carporten mv. med bygningsdel klasse EI 60 [BD-bygningsdel 60], der slutter tæt til den yderste tagdækning. Ved ydervægge af bygningsdel klasse EI 60 [BD-bygningsdel 60] bør den brandadskillende bygningsdel mindst føres frem til indersiden af den udvendige beklædning.

Tilsvarende eksempler kan lægges til grund for enfamiliehuse med integrerede garager, carporte mv., der er sammenbyggede eller ligger med mindre indbyrdes afstand end 5,0 meter.
8 Staldbyggeri

8.1 Generelt

Det bemærkes, at jordbrugserhvervenes dyrestalde er omfattet af følgende brandkrav i bygningsreglement 2015, brandforhold i kap. 5.1, flugtveje i kap. 5.2, konstruktive forhold i kap. 5.3 (gælder alene for dyrestalde), brandtekniske installationer i kap. 5.4 (gælder alene for dyrestalde), brand- og røgspredning i kap. 5.5 samt redningsberedskabets insatsmulighed i kap 5.6, jf. bygningsreglementet kap. 1.2, stk. 3.

Stalde i flere etager er ikke omfattet af disse eksempler.

Udover sikkerheden for dyrene skal der ved indretningen af stalde også tages hensyn til sikkerheden for de personer, der opholder sig i stalden. Ofte vil personsikkerheden dog være varetaget, dersom der er forsvarlig mulighed for rømning af dyr.

Bygninger/stalde med meget store oplag af halm, hø, korn og foderstoffer i bygningen kan tillige være omfattet af beredskabslovgivningen.

8.2 Beskrivelse af staldtyper, brandbelastning, evakueringsmulighed og rømningstider
Dette afsnit beskriver, hvorledes traditionelle dyrestalde indrettes og bruges. Beskrivelserne er kun vejledende og tjenere primært til at sikre et fælles grundlag for drøftelser om indretning af stalde for så vidt angår staldindretning, rømningstider, brandbelastning mv. Beskrivelserne omfatter de mest almindeligt forekommende dyrestalde. Det bemærkes, at de i dette afsnit beskrevne rømningstider er under normale forhold udført af de personer, der til daglig håndterer dyrene. I brandsituationen kan rømningstiderne derfor være betydeligt længere, da dyrene kan
være påvirket af røg og varme og da det er redningsberedskabet, der skal gennemføre rømningen.

8.2.1 Fjerkræ
Stalde til fjerkræ opdeles normalt i stalde til slagtekyllingeproduktion og stalde til konsumægsproduktion. I begge tilfælde vil personbelastningen være begrænset.

Brandbelastning
Brandbelastningen i disse stalde består oftest i foder, strøelse, inventar samt eventuelt maskiner, som f.eks. en traktor. Strøelsen er i form af snittet halm eller spåner, som fordeles på gulvet inden insættelsen af fjerkræ i stalden.

Rømning
Fjerkræ er flokdyr, og hvis fremmede træder ind i stalden flygter de til den modsatte ende af stalden. Fjerkræ stresses hurtigt, og i modsætning til andre dyrearter er det ikke muligt at ”drive” dyrene ud. Tidsmæssigt tager det under normale omstændigheder ca. 4-6 timer at indfange 35.000-40.000 fjerkræ med en fangemaskine. I denne type stalde vil en effektiv rømning af dyrene i tilfælde af en brand derfor ikke umiddelbart være mulig.

Stalde til komsumægproduktion er dels stalde til opdræt af kyllinger til hønniker/høner og stalde til selve ægproduktionen. Opdræt af kyllinger kan enten ske på gulv, som er en produktionsform, der minder meget om slagtekyllingeproduktionen, eller i bure, men denne form er begrænset i nye stalde.

Ved ægproduktionen er der primært tale om tre forskellige systemer, nemlig produktion i:

- étplansystem med dybstrøelse, gødningstomme, slats og æglegningsreder
- fleretagesystem med dybstrøelse, men med tre niveauer, hvor hønerne kan bevæge sig og hvor der er vand og foder samt redesystemer
- bursystem, hvor hønerne i grupper på op til 10 høner i et bur står i tre etager – i de nye stalde etableres ofte 2 gange 3 etager.

Staldenes størrelse kan variere en del, men i stalde med étplansystem vil der typisk være ca. 12.000 høner, i fleretagesystemer vil der typisk være
ca. 25.000 høner, og i et bursystem vil der typisk være 45.000 høner (2 x 3 etager).

Figur 8.1. Tøvsnit af bursystem med 2 x 3 etager.

Opdrætssystemerne i disse stalde vil altså variere i størrelsen fra omkring 12.000 hønniker til ca. 45.000 hønniker.

Et fangehold på ca. 10 mand vil under normale forhold kunne håndtere omkring 5.000 hønniker i timen. Med disse tømningstider er det ikke muligt at evakuere fjækræ i tilfælde af brand.

8.2.2 Kvæg

I kvægbesætninger opdeles dyrene typisk i 3 grupper: Køer, ungdyr og kalve.

Malkekøer bliver for hovedpartens vedkommende opstaldet i stalden med sengebåse, kører af kødkvægsracer går næsten udelukkende i stalden med dybstrøelse.
Figur 8.2. Princip for staldsystem.

Malkekøer
I løsdriftsstalde til malkekøer vil sengebåse og passager ofte ligge på langs i bygningen og en eventuel evakuering af dyrene vil ske via porte og døre i bygningens gavle.

Staldene kan typisk være mellem 4.500 og 5.500 m², og der vil ofte være mellem 400 og 500 dyr.

Brandbelastninger består primært af fodermaskiner, malkemaskiner, lejemateriale og strøelse i form af kunststofbelægning, halm og spåner, foder og eventuelt af køretøjer.

Kødkvæg
Stalde til kødkvæg er ofte kendtegnet ved store arealer uden meget inventar, ofte kun et fanggitter ved forværket. Der vil typisk være gode adgangsforhold til dyrenes hvileareal via en eller flere store porte, da man dagligt skal ind med traktor og maskiner for at strø. Også her vil en rømning af stalden i normal situationen være ukompliceret.

Staldene kan typisk være mellem 1.200 og 1.500 m², og der kan typisk være 120 og 240 dyr.

Ungdyr
Stalde, der opføres til ungdyr, vil typisk være af samme staldsystem som til kørne. Den største forskel er, at dyrene går i mindre hold, så der er

Staldene kan typisk være 2.500 – 3.000 m², og der vil være 400 – 500 dyr.

Brandbelastningen i bygningen vil typisk være strørelse i form af halm i hvilearealet, kunststofbelægning, halm og spåner i sengebåse samt stråfoder på foderbordet.

Opstalding af kalve (< 6 mdr.) adskiller sig noget fra de 2 øvrige besætningsgrupper, da kalvene de første 2 – 8 uger opstaldes enkeltvis i bokse og senere i mindre grupper med 6 – 10 kalve pr. boks.

Evakuering af kalve i enkeltbokse er fysisk og tidsmæssigt krævende, da dyrene ofte skal løftes ud af boksen og samtidig ikke er vant til at blive drevet med.

Da kalvene kun går i enkeltbokse i ganske få uger, drejer det sig ofte om forholdsvis få dyr. I en besætning med 200 køer vil der f.eks. være mellem 16 og 40 kalve i alderen 0 til 8 uger.

Kalve i fællesbokse vil kunne håndteres som de øvrige besætningsgrupper.

Rømningstider under normale forhold

I nedenstående tabel fremgår de forventede rømningstider for kvægstalde under normale forhold og når arbejdet udføres af de personer, der normalt arbejder i stalden. Det skal dog bemærkes, at der kan være meget store forskelle på besætningerne.
Tabel 8.1. Eksempler på rømningstider for kvæg i normalsituation.

<table>
<thead>
<tr>
<th>STALDTYPE</th>
<th>RØMNINGSTID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malkekøer</td>
<td></td>
</tr>
<tr>
<td>• Grupper af 120 – 130 køer</td>
<td>20 minutter med 1 person</td>
</tr>
<tr>
<td>• Hele stalde optil 550 køer</td>
<td>60 minutter med 2 personer</td>
</tr>
<tr>
<td>Kød_kvæg</td>
<td></td>
</tr>
<tr>
<td>• Grupper af 50 dyr</td>
<td>10 minutter med 1 person</td>
</tr>
<tr>
<td>Ungdyr</td>
<td></td>
</tr>
<tr>
<td>Går typisk i grupper af 15 – 40 dyr</td>
<td></td>
</tr>
<tr>
<td>• Evakuering af 3 grupper, samlet 45 – 120 dyr</td>
<td>30 minutter med 1 person</td>
</tr>
<tr>
<td>• Evakuering af 6 grupper, samlet 240 – 480 dyr</td>
<td>60 minutter med 2 personer</td>
</tr>
<tr>
<td>Kalve</td>
<td></td>
</tr>
<tr>
<td>• 10 – 20 kalve i enkeltbokse</td>
<td>20 minutter med 2 personer</td>
</tr>
<tr>
<td>• 20 – 40 kalve i fællesbokse</td>
<td>20 minutter med 2 personer</td>
</tr>
</tbody>
</table>

8.2.2 Svin
Stalde til svin opdeles i farestalde, løbedrægtighedsstalde, smågrisestalde og slagtesvinstalde. Hovedparten af alle farestalde er såkaldte kassestier.

Figur 8.3. Princip for staldsystem.
Drægtige søer opstaldes i løsgående systemer. Fra fravænning og indtil fire uger efter løbning kan søerne opstaldes i bokse. Ved løsgående drægtige søer er der to hovedtyper af stalde afhængig af fodersruingsprincipe. Det ene system er elektronisk sofodring (ESF), hvor søerne bærer elektronisk identifikation og fodres individuelt i foderstationer. Det andet system er en boks pr. so, hvor søen både kan æde og hvile i boksen, men også bevæge sig ud i stien.

Rømningstider under normale forhold

I nedenstående tabel fremgår de forventede rømningstider for svinestalde under normale forhold, og når arbejdet udføres af de personer, der normalt arbejder i stalden. Det skal dog bemærkes, at der kan være meget store forskelle på besætningerne.

Tabel 8.2. Eksempler på rømningstider for svin under normale forhold.

<table>
<thead>
<tr>
<th>STALDTYPE</th>
<th>RØMNINGSTID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Løbe-drægtighedsstalde</td>
<td>Bokse, 15 minutter pr. 30 bokse ved 1 person</td>
</tr>
<tr>
<td></td>
<td>Løsdrift, flokke, 10 minutter pr. 30 søer ved 1 person</td>
</tr>
<tr>
<td>Farestalde</td>
<td>Søer og pattegrise, 60 minutter pr. 30 søer ved 2 personer</td>
</tr>
<tr>
<td>Smågrisestalde</td>
<td>30 minutter pr. 500 stipladser ved 2 personer</td>
</tr>
<tr>
<td>Slagtesvinstalde</td>
<td>60 minutter pr. 500 stipladser ved 2 personer</td>
</tr>
</tbody>
</table>

Brandbelastning

I smågrise- og slagtesvinestalde anvendes der normalt ikke halm i nævneværdige mængder, og der anvendes typisk andre former for rode- og beskæftigelsesmaterialer. I farestalde skal der anvendes halm i forbindelse med søernes redebygningsafærd umiddelbart før faring. I drægtighedsstalde anvendes typisk 70-100 kg strøelse pr. stiplads årligt som rode og beskæftigelsesmaterialer i staldsystemer med delvist fast gulv. Er der tale om systemer med et tykt lag strøelse i lejarealet, er det anslåede forbrug ca. 300-400 kg pr. stiplads årligt. Ved valg af dybstrøelse i isolerede bygninger med mekanisk ventilation stiger forbruget til 800-1.000 kg pr. stiplads årligt.
8.2.3 Pelsdyr

Pelsdyrfarme er ofte opbygget med åbne og uisolerede haller uden kunstigt lvs, idet pelsdyrproduktion forudsætter almindeligt dagslys.

I daglig tale taler man om ”lukkede” og om ”åbne” haller. Ved ”åbne” haller forstås haller uden sidebeklædning, og hvor dyrene i tilfælde af udslop holdes inde med et omfangshegn. Med ”lukkede” haller forstås haller, hvor gavl- og sidebeklædningen danner hegn ud mod det fri, og hvor dyrene i tilfælde af udslop holdes inde i bygningen. Inventaret er i store træk ens uanset haltype.

En gennemsnitsfarm er i dag på ca. 2.000 årstøver, hvilket kræver ca. 7.000 burrum og et bebygget areal på ca. 5.000 m². I perioden december til marts vil ca. 1/3 del af farmen være i brug, og i april til juni bruges ca. 2/3 del af farmen. Der er således kun fuld belægning på farmen, fra hvallene sættes ud i juli og frem til pelsningen i november.

I tilfælde af brand vil det næppe være aktuelt at lukke dyrene ud af burerne, idet denne situation øger risikoen for udslop til naturen. Ligeledes vil det være umuligt at drive pelsdyr i bestemte retninger.

![Figur 8.4. Staldopbygning.](image-url)

8.2.4 Heste

Ridehuse vil skulle behandles forskelligt afhængigt af, hvorledes de er udformet og anvendes. Det er derfor ikke generelt muligt at henføre ridehuse til én anvendelseskategori. Simple ridehuse, som kun anvendes af meget få personer, vil f.eks. i nogle tilfælde kunne behandles under anvendelseskategori 1, hvorimod ridehuse med tribuner, servering eller overnatning ikke vil kunne indeholdes i denne anvendelseskategori. Rum til overnatning mv. vil ofte være omfattet af anvendelseskategori 4 eller 5.
Hold af heste og stalde hertil adskiller sig fra de øvrige typer af dyrehold. Forskellen består primært i, at hovedparten af de opstaldede dyr er relateteret til andet erhverv eller privat anvendelse. Der er således tre hovedgrupper af hestehold.

Tabel 8.3. Hestehold.

<table>
<thead>
<tr>
<th>TYPER AF HESTEHOLD</th>
<th>ANVENDELSE</th>
<th>BESÆTNINGSSTØRRELSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landbrug</td>
<td>Stutteri – opdræt</td>
<td>8-50 stk.</td>
</tr>
<tr>
<td>Andet erhverv</td>
<td>Hestepension</td>
<td>10-30 stk.</td>
</tr>
<tr>
<td></td>
<td>Ridecenter</td>
<td>20-100 stk.</td>
</tr>
<tr>
<td>Privat</td>
<td>Hobby</td>
<td><8 stk.</td>
</tr>
</tbody>
</table>

Som udgangspunkt placeres hestestalde som øvrige stalde i anvendelseskategori 1. Der bør dog ved andet erhverv være opmærksomhed på den specifikke anvendelse og personbelastning.

Typer af opstaldning

- Opstaldning i enkeltboks
- Folingsboks: Føl og hoppe opstaldes sammen ca. det først halve år
- Gruppeopstaldning: Opstaldning af flere heste uden adskillelse i samme rum.

Typisk staldbygning

Ved bokopstaldning er stalden typisk indrettet med 1-2 eller 4 rækker med en bred staldgang. De brede gange fungerer naturligt som primære flugtveje. Nye stalde er generelt udført med et staldrum, som er åbent til kip, og har derfor generelt et stort luftvolumen. De fleste nye hestestalde udføres med naturlig ventilation, med fast åbning i kippen. Stalde til heste er typisk ikke over 1.000 m².
Brandbelastning
Brandbelastningen i hestestalde består af inventar og overflader i træ eller plast, strøelse og foder (spåner, halm eller træpiller, hø, ensilage og wrap). Typisk er der i hestestalden mindre oplag til en kort periode. Udover foder og strøelse kan der ofte være ikke ubetydelige mængder af diverse hesteudstyr, strigleskabe mv.

Rømningstider under normale forhold
Hestes reaktionsmønster i forbindelse med en brand vil typisk være at de ønsker at blive i stalden, uagtet at der er varme, støj og røg. Hestene kan måske orientere sig ved lyset fra flammerne og ønsker derfor sandsynligvis ikke blot at gå ud i nattemørket. Erfaringer viser, at heste lige frem kan finde på at løbe ind i den brændende bygning igen. Hestenes adfærd nødvendiggør altså, at dyrene evakueres til et sikkert sted på ejendommen, hvor det kan tilses at de bliver. Det ”sikre sted” bør være oplyst, så dyrene kan orientere sig. Som udgangspunkt må heste ikke drives ud af bygningen, dog kan gøres en undtagelse, såfremt hestene har direkte adgang til egen fold. Et sikkert sted for heste kan f.eks. være en anden brandsektion fx ridehal eller opsadlingsafsnit (spiltove), fold med tydeligt hegn (fx raftehegn el.lign.) eller almindelig fold som skønnes at tilgodese situationens behov.

I nedenstående tabel fremgår de forventede rømningstider for hestestalde under normale forhold og når arbejdet udføres af de personer, der normalt arbejder i stalden. Det skal dog bemærkes at der kan være meget store forskelle på besætningerne.
8.3 Brandsikring af dyrestalde

8.3.1 Generelt
Traditionelle dyrestalde indgår oftest i anvendelseskategori 1. Eksemplerne i dette afsnit omfatter derfor kun dyrestalde i anvendelseskategori 1.

Dokumentation af brandsikringen af dyrestalde kan udføres enten ved at følge nedenstående eksempler, ved at der udføres en særligt brandsikring teknisk dokumentation eller en kombination heraf. Denne dokumentation kan blandt andet bestå i en brandsikring teknisk dimensionering, som udarbejdes på grundlag af den konkrete staldbygnings udformning og anvendelse. Der henvises i øvrigt til afsnit 1.

8.3.2 Flugtvejsforhold (rømning) med særlig fokus på dyr
Det er fastlagt i bygningsreglement 2015, kap. 5.1 stk. 1, at der for dyrestalde skal sikres acceptable forhold for dyrene i tilfælde af brand. Med acceptable forhold menes bl.a. mulighed for redning af dyr. Opstaldede dyr har ikke uden aktiv handling fra et mandskab på et skadested mulighed for at påbegynde en rømning. Der er derfor særlige forhold omkring rømning af dyr, som der skal tages højde for ved brandsikring af dyrestalde. Reaktionsmønstrene hos dyr, der er udsat for stress som følge af røg- og varmeudvikling, uvante lyde og usædvanlig aktivitet i de vante omgivelser, medfører som regel, at dyrene ikke lader sig føre og dirigere som under normale forhold.

Opstaldningsform	Rømningstid
Heste opstaldet i enkeltbokse | 2-4 minutter pr. hest ved 1 person
Gruppeopstaldning med direkte adgang til egen fold | 2-5 minutter pr. hest ved 1 person
Går typisk i grupper af 5-15 heste

Tabel 8.4. Eksempler på rømningstider for heste under normale forhold.

Gruppeopstaldning uden direkte adgang til egen fold | 2-5 minutter pr. hest ved 1 person
Går typisk i grupper af 5-10 heste

Staldens indretning har derfor stor indflydelse på mulighederne for at rømme dyrene. Særligt lysforhold, bredde og udformning på passager
samt betjening af staldinventar har afgørende betydning for en effektiv rømning af dyr.

I nogle typer af stalle kan der forekomme flere mindre staldrum i samme bygning, hvorfor rømning af dyr fra sådanne stalle kan være mere kompliceret og tidskrævende. Stalle med flere staldrum kan med fordel indrettes med udgang fra alle staldrum.

Samtidigt bør det tages i betragtning, at det i nogen tilfælde ikke er muligt at evakuere visse dyrearter på en for redningsberedskabet forsvarlig måde inden for en rimelig tid. Det kan f.eks. være fjærkræ i bure, pelsdyr og svin opstaldet i bokse. Man bør i disse tilfælde forsøge at undgå, at dyrene lider unødig.

Antal evakueringsveje

Der bør være mindst to af hinanden uafhængige udgange fra et staldrum på mere end 150 m².

I store sammenhængende staldrum vil det normalt være tilstrækkeligt, at den indbyrdes afstand mellem evakueringsdøre ikke overstige 50 m målt i yderside.

I staldrum med flere mindre enheder er det nødvendigt at tillægge passagerne stor betydning. Det bør her som udgangspunkt tilstræbes, at hvert staldrum har dør direkte til terræn i det fri. I de tilfælde, hvor der ikke udføres dør direkte til terræn i det fri fra hvert mindre staldrum, bør der være særlig fokus på, at de interne passager disponeres på en overskuelig måde. I dette tilfælde bør den afstand, som dyr under rømning skal tilbagelegge ikke overstige 25 m af hensyn til det tidsforbrug, som redningsberedskabet i givet fald skal bruge på at føre og dirigere dyrene frem til terræn i det fri.
I fjerkræstalde, hvor udstyret i stalden er opbygget i rækker på langs med stalden, som for eksempel burægstalde og hvor rømning af dyrene er meget vanskelig, bør antallet evakueringsdøre fastlægges på baggrund af en vurdering af personsikkerheden for de personer, der er i bygningen, samt indsatsmulighederne.

Udformning af passager samt døre til og i passager

Passager bør helt til terræn i det fri udføres uden niveauændringer. Er niveauændringer nødvendigt, f.eks. ved udgangsdøre, bør disse ikke være højere end 150 mm.

Generelt bør passager udføres uden indsnævring helt frem til terræn i det fri.

Dyr drages ofte af lys. Dyrs reaktionsmønstre medfører således ikke, at dyr søger mod en åben dør, der i dyrets synsfelt udgør et mørkere område end dyrenes aktuelle opholdssted. Derfor bør evakueringsveje udføres med en belysning svarende til normal arbejdsbelysning. Der bør endvidere udføres en udvendig belysning med en kraftig lyskilde placeret udenfor umiddelbart ved døre til terræn i det fri, som indgår i rømningsvejene. Terrænet umiddelbart uden for døren til terræn i det fri bør således være kraftigere belyst end selve passagen til rømning. Det kan være hensigtsmæssigt i større stalde, at der installeres evakueringslys i evakueringsveje og ved evakueringsdøre til terræn i det fri, således at terræn i det fri kan oplyses.

Døre fra evakueringsveje og til terræn i det fri kan udføres som enten sidehængte døre eller skydedøre. Såfremt døre udføres som sidehængte døre, bør dørene kunne fastholdes i åben stilling. Døre udført som skydedøre, skal sikres så at dørenes fulde funktion ikke hindres som følge af eksempelvis urenheder i styreskinne eller som følge af frost eller sne.

Passager i stalde med flere staldenheder bør kunne holdes røgfrie enten ved at de udføres som selvstændige brandmæssige enheder, der hindrer brand- og røgsprevning, eller ved udførelse af brandventilation i de enkelte staldenheder.
Figur 8.6. Primære (vandrette) og sekundære (lodrette) passager.

Tabel 8.5. Eksempler på minimum bredde af passager i staldbygninger.

<table>
<thead>
<tr>
<th></th>
<th>Primære (Direkte til det fri)</th>
<th>Sekundære (Til andet rum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvæg</td>
<td>2,0 m</td>
<td>1,2 m</td>
</tr>
<tr>
<td>Svin</td>
<td>1,2 m</td>
<td>1,0 m</td>
</tr>
<tr>
<td>Fjerkræ</td>
<td>1,0 m</td>
<td>1,0 m</td>
</tr>
<tr>
<td>Mink</td>
<td>1,2 m</td>
<td>1,0 m</td>
</tr>
<tr>
<td>Heste</td>
<td>2,0 m, højden bør være mindst 2,2 m</td>
<td>1,2 m</td>
</tr>
</tbody>
</table>

Tabel 8.6. Eksempler på minimum bredde af døre til og fra passager i staldbygninger.

<table>
<thead>
<tr>
<th></th>
<th>Primære (Direkte til det fri)</th>
<th>Sekundære (Til andet rum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvæg</td>
<td>2,0 m</td>
<td>1,2 m</td>
</tr>
<tr>
<td>Svin</td>
<td>1,2 m</td>
<td>1,0 m</td>
</tr>
<tr>
<td>Fjerkræ</td>
<td>1,0 m</td>
<td>1,0 m</td>
</tr>
<tr>
<td>Mink</td>
<td>1,2 m</td>
<td>1,0 m</td>
</tr>
<tr>
<td>Heste</td>
<td>2,0 m</td>
<td>1,2 m</td>
</tr>
</tbody>
</table>
8.3.3 Konstruktive forhold

Der henvises til afsnit 3.1, som vedrører klassifikation af byggevarer og bygningsdele, byggevarers og bygningsdeles reaktion på brand samt brandmodstandsevne, kombination af brandmodstandsevne og reaktion på brand.

Forisoleringssmaterialsohenvisestilafsnit3.2,somvedrørerisoleringssmaterialsoibyggningsdele.

Bærende bygningsdele

Bærende bygningsdele kan bl.a. omfatte vægge, søjler, bjælker, etageadskillelser, altangange og altaner samt trapper. Spærkonstruktionen er også en bærende bygningsdel, hvis der er risiko for progressivt kollaps, eller hvis spærkonstruktionen har indflydelse på andre bærende bygningsdeles stabilitet.

Det er ikke nødvendigt at stille krav til brandmodstandsevnen for de dele af en tagkonstruktion, som kun skal bære sig selv og naturlasten – medmindre et svigt i disse dele af tagkonstruktionen har indflydelse på bygningens afstivende system over for vandrette laster eller på andre bærende eller ikke-bærende bygningsdeles brandmodstandsevne.

I nedenstående tabel er givet en række eksempler på, hvordan bærende bygningsdele – adskillende og ikke adskillende – i bygninger med 1 etage kan udføres.
BYGNINGER MED 1 ETAGE

(bortset fra etageadskillelse over kælder samt de bygningsdele, der bærer denne etageadskillelse, som er omfattet af ovenstående generelle eksempler)

| Bygningsdel klasse R 30 [BD-bygningsdel 30], hvis bygningen er op til 1.000 m² |
| Bygningsdel klasse R 60 [BD-bygningsdel 60], hvis bygningen er mere end 1.000 m² |

I en bygning med let tagkonstruktion og med jævnt fordelt brandventilation i tagfladen kan de bærende bygningsdele i bygningen udføres uden krav til brandmodstandsevne, hvis bygningen er under 1.000 m², og i bygninger over 1.000m² kan de bærende konstruktioner udføres

- som bygningsdel klasse R 30 [BD-bygningsdel 30], hvis bygningsdelen bærer mere end 200 m² tag,
- som bygningsdel klasse R 60 [BD-bygningsdel 60], hvis bygningsdelen bærer mere end 600 m² tag,
- uden krav til brandmodstandsevnen for øvrige bygningsdele.

Udformes brandventilationsåbningerne som angivet i DS/EN 12101-2, Brandventilation vil et frit aerodynamisk areal på 2 % være tilstrækkeligt for bygninger med et etageareal på højst 500 m² og 10 m² for bygninger med et etageareal på mere end 500 m² eller derover, se 4.1.5 om røgzoner og placering af brandventilationsåbninger.

For nærmere specifikation af brandventilationsanlægget henvises til afsnit 4.1.5.

8.3.4 Brandtekniske installationer

Brandtekniske installationer skal i henhold til bygningsreglement 2015, kap 5.4 stk. 1 og 2 udføres så de er pålidelige samt kan kontrolleres og vedligeholdes i hele bygningens levetid. Samtidigt skal det sikres, at installationerne kontrolleres og vedligeholdes, så de er pålidelige.

Med hensyn til beskrivelse af den enkelte anlægstype, kontrol og vedligeholdelse henvises til afsnit 4.1.

I bygningsreglement 2015, kapitel 5.4 fremgår kravene til brandtekniske installationer. I kapitel 5.4, stk. 18 fremgår det tillige, at bestemmelsenerne kan fraviges, hvis det over for kommunalbestyrelsen kan dokumenteres, at sikkerhedsniveauet, som beskrevet i kap. 5.1, stk. 1, kan opnås på anden måde.

Slangevinder

I bygningsafsnit med et etageareal større end 1.000 m² skal der i henhold til bygningsreglement 2015, kap. 5.4 installeres slangevinder. Slangevinnderne bør anbringes ved staldens udgangsdøre.
Automatisk detektering af røg og varme
Ifølge bygningsreglement 2015, kapitel 5.4, stk. 4 skal der i visse staldbygninger større end 2.000 m² installeres automatisk brandalarmanlæg, med mindre bygningen er udført med automatisk sprinkleranlæg.

Som følge af de ofte store interne afstande på landbrugsejendomme sammenholdt med lange tidsrum uden opsyn i de enkelte staldrum kan der forløbe uhensigtsmæssig lang tid fra starten af en brand og til at en brand bliver synlig for enten forbipasserende ellerpersonalet på landbruget.

Det kan således være afgørende for en hurtig indsats, at personalet tidligt i et brandforløb opdager en brand under udvikling.

Automatisk brandventilation eller sprinkleranlæg
I henhold til bygningsreglement 2015, kap. 5.4, stk. 8 skal bygninger med et gulvareal større end 1.000 m² udføres med et automatisk brandventilationsanlæg eller et automatisk sprinkleranlæg eller det skal på anden vis dokumenteres, at der ikke er risiko for overtænding i bygningen.

Hvis sikring mod overtænding ønskes sikret på anden vis, skal det bemærkes, at der ved beregning, som udgangspunkt, ikke kan ses bort fra lofter med diffus ventilation, så længe ventilationen fungerer. I løsdriftstalde med meget store volumen og naturlig ventilation vil der ofte ikke være risiko for overtænding, men det vil bero på en konkret vurdering og dokumentation. Et automatisk brandventilationsanlæg kan i visse tilfælde sammenbygges med øvrige ventilationsanlæg eller udføres med faste åbninger.
8.3.5 Brand- og røgspredning

Brand- og røgspredning i det rum, hvor branden opstår
Indvendige væg- og loftoverflader bør udføres som beklædning klasse K_{10} B-s1,d0 [klasse 1 beklædning]. En ydervæg, som udelukkende består af materiale klasse B-s1, d0 [klasse A materiale] anses at opfylde betingelserne for at være beklædning klasse K_{10} B-s1,d0 [klasse 1 beklædning].

Bygninger i 1 etage med brandceller på indtil 1.000 m² kan dog udføres med indvendige væg- og loftoverflader som beklædning klasse K_{10} D-s2,d2 klasse 2 beklædning. Det vil ofte være hensigtsmæssigt at udføre gulve i stalde af materialer med en lav brandbelastning og med en lav risiko for brandspredning.

Nedhængte lofter og lofter til diffus ventilation bør være udført af materiale klasse B-s1, d0 [klasse A materiale].

Brand- og røgspredning i den bygning, hvor branden opstår eller til andre bygninger
Udvendige vægoverflader i bygninger med 1 etage bør udføres mindst med beklædning klasse K_{10} D-s2,d2 [klasse 2 beklædning] eller som ydervæg med udvendig overflade klasse D-s2, d2. I bygninger med naturlig ventilation, som er udført med gardiner, bør gardinerne udføres mindst som brandmæssigt egnet teltdug.

Tagdækninger bør være brandmæssigt egnete og normalt kan anvendes tagdækning klasse B_{ROOF}(12)[klasse T tagdækning]. Ovenlys kan også medføre en risiko for brandspredning. Anvendes der ovenlys af brændbare materialer, er det derfor relevant at vurdere placeringen og omfanget af ovenlysene.

Brandmæssig opdeling af rum og bygningsafsnit, brandmæssige enheder
Staldbygninger med et etageareal på mere end 600 m² bør opdeles, så områder med væsentligt forskellig brandbelastning eller brandfaremomenter udgør hver sin brandcelle. Som eksempel herpå kan nævnes store oplag af halm (f.eks. mere end 200 MJ/m² omsluttende overflade) eller parkering af maskiner med forbrændingsmotor i en bygning der i øvrigt anvendes som staldbygning.

Brandcelleadskillelser bør udføres som bygningsdel klasse EI 60 [BD-bygningsdel 60].
Eksempler på enheder, som det anbefales at udføre som selvstændige brandsektioner, er:

- Staldrum på højst 2.000 m²
- Staldrum på højst 5.000 m² såfremt der er taget andre tiltag til at begrense en brand, såsom brandventilation, røgskærme eller flugtveje.
- Staldrum på højst 10.000 m² såfremt der er udført permanent eller automatisk brandventilation udført som angivet i afsnit 4.1.5 og efter en brandteknisk dimensionering.

Brandsektionsadskillelser bør udføres som bygningsdel klasse EI 60 A2-s1,d0 [BS-bygningsdel 60]. Brandsektionsadskillelser bør føres op i tæt forbindelse til den yderste tagdækning og ud til indersiden af den udvendige beklædning.

Med hensyn til risikoen for vinkelsmitte i forhold til andre bygninger henvises til afsnit 5.2.10.

Stalde med flere staprum kan med fordel opdeles i egentlige brandmæssige enheder, således en brand- og røgspredening kan afgrænse og redning kun skal foretages fra det direkte truede staprum.

Bygninger på samme grund betragtes som én bygning med hensyn til opdeling i brandmæssige enheder, så som brandceller og brandsektioner, når afstanden mellem bygningerne er mindre end summen af de afstande, de enkelte bygninger skulle have til naboskel.

Brandspredning til bygninger på anden grund

Af afsnit 5.3 fremgår hvorledes bygninger bør placeres i forhold til skel, vej- og stimidte, så der ikke er risiko for brandspredning.

8.3.6 Redningsberedskabets indsatsemulighed

Der henvises til afsnit 6 samt til nedenstående driftsmæssige forhold.

Til brug for rømning af dyr kan det være nødvendigt med særlige redskaber beregnet til at drive den aktuelle dyreart. Uddrivningsplader vil bl.a. være en stor hjælp og sikkerhedsmæssig faktor ved evakuering af grise og køer.

Sådanne særlige redskaber bør være til rådighed i umiddelbart nærhed af det aktuelle staldafsnit.
Der bør endvidere være redskaber, der egner sig til eventuel midlertidig afspærring i de interne passager.

Det vil derfor være hensigtsmæssigt for indsatslederens arbejde, hvis der er en oversigtspplan til rådighed for hele ejendommen straks ved ankomst til skadestedet. Der bør derfor udarbejdes en oversigtspplan, som enten kan placeres ved ejendommen eller medbringes af redningsberedskabet.

Oversigtspplanen bør angive følgende emner tydeligt:

1. Disponering af den samlede ejendom med tilhørende vejføring både fra offentlig vej og internt på ejendommen.

2. Tydelig opdeling af bygningsmassen med angivelse af eventuelle brandsektionsskel.

3. Markering af evakueringsveje i bygninger helt til terræn i det fri.

5. Angivelse af rum for opbevaring af kemikalier.

6. Placering af olietanke i terræn og i bygning.

8. Angivelse af internt slukningsudstyr og evakueringsudstyr som ud-drivningsplader.
9 Industri- og lagerbygninger i én etage

9.1 Generelt
Dette afsnit kan anvendes i forbindelse med brandsikring af traditionelle industri- og lagerbygninger i én etage.

Nogle industri- og lagerbygninger kan tillige være omfattet af beredskabslovens krav til brand- og eksplosionsfarlig virksomhed og oplag. Der henvises til Beredskabsstyrelsens tekniske forskrifter for brandfarlig virksomhed og oplag.

Hvorvidt en bygning tillige er omfattet af beredskabsloven, afgøres af anvendelsesområdet for de tekniske forskrifter, idet alt byggeri som udbryder på omfattet af byggeloven og dermed bygningsreglementet.

Der henvises til meddelelse nr. 15 fra Beredskabsstyrelsen.

Eksemplernes anvendelsesområde
Eksemplerne i dette afsnit gælder for bygningsafsnit i traditionelle industri- og lagerbygninger i én etage i anvendelseskategori 1 med en stablingshøjde på op til 40 m. Andre løsninger som f.eks. automatlagre og clad-rack er ikke omfattet af eksemplerne.

Dette er ikke til hinder for, at der kan opføres industri- og lagerafsnit i bygninger i mere end én etage, eller at der kan anvendes automatlagre mv., men i så fald bør der udarbejdes en selvstændig brandteknisk dokumentation for, at bygningsreglements brandkrav er opfyldt. Eksemplerne i dette afsnit kan indgå som en del af denne dokumentation, idet der dog skal tages hensyn til de særlige forhold ved disse bygninger.

Industri- og lagerfunktioner i bygninger med anden anvendelse
For så vidt angår bygninger med bygningsafsnit i flere anvendelseskategorier, beskriver bygningsreglement 2015, kap. 5.5.2, stk. 2, at bygningsafsnit i forskellige anvendelseskategorier skal udgøre selvstændige brandmæssige enheder. Der kan være flere anvendelseskategorier i et bygningsafsnit, hvis det sikres, at sikkerhedsniveauet, som det er beskrevet i kap. 5.1, stk. 1, er opfyldt. Dermed tillader bygningsreglementet, at
der er flere anvendelseskategorier i samme brandmæssige enhed. Dette gælder ligeledes for industri- og lagerbygninger.

Der vil ofte forekomme funktioner i bygningsafsnit i andre anvendelseskategorier, der er sammenlignelige med industri- og lagerbygninger. Eksempelvis kan der være lager- og depotrum i forbindelse med skoler, butikker, hoteller, plejeinstitutioner mv. i flere etager. Her kan rummet udføres på tilsvarende måde som det bygningsafsnit, rummet indgår i. Dette er beskrevet i afsnit 2 - 6.

Hvor butikker indrettes som lagerbutikker med en stablingshøjde på mere end 8 m, bør der ved indretningen af bygningen både tages hensyn til eksemplerne for industri- og lagerklasse 5 (ILK 5) og for bygningsafsnit i anvendelseskategori 3, hvis der er mange mennesker i butikken. Lagerbutikker med en stablingshøjde på mindre end 8 m sidestilles med almindelige butikker, som er omfattet af anvendelseskategori 3.

Der kan indrettes værksteder, storkøkkener og lignende, der minder om produktionsafsnit, i bygninger i flere etager. I disse tilfælde vil det være tilstrækkeligt at følge eksemplerne i afsnit 2 - 6, såfremt rummene har en anvendelse, der kan sidestilles med de efterfølgende eksempler for bygningsafsnit i industri og lagerklasse 1-4 (ILK 1 – 4).

Der vil sædvanligvis være bygningsafsnit indrettet med kontorafsnit, kantiner mv. i forbindelse med industri- og lagerbygninger. Disse tilknyttede funktioner kan udføres, som det er beskrevet for den relevante anvendelseskategori i afsnit 2 - 6.

Andre metoder til dokumentation af bygningsreglementets brandkrav

Det er til enhver tid muligt at eftervise, at sikkerhedsniveauet i bygningsreglementet er tilgodeset på anden måde end ved brug af disse eksempler. Dette kan eksempelvis ske ved at foretage en brandteknisk dimensionering eller en komparativ analyse. For nærmere information herom henvises til forordet i denne eksempelsamling.

9.1.1 Anvendelseskategori samt industri- og lagerklasser

Bygningsreglement 2015, kap. 5.1.1, definerer 6 forskellige anvendelseskategorier ud fra en række kriterier vedrørende risikoforhold under brand. Disse kriterier baseres på sikkerheden for personer og deres forskellige behov for sikkerhed, herunder antal personer, som kan blive
påvirket af en brand, personernes mobilitet samt evne til at erkende og reagere på en brand.

Industri- og lagerbygninger i én etage vil sædvanligvis være indrettet til dagophold (hvor personer, der opholder sig i bygningen, er vågne), og personerne har kendskab til bygningsafsnittets flugtveje og er i stand til at bringe sig selv i sikkerhed.

Industri- og lagerklasser (ILK)

Baseret på en bestemmelse af anvendelsen og personerne i bygningen vil industri- og lagerbygninger i én etage normalt falde ind under anvendelseskategori 1.

Industri- og lagerbygninger i én etage i anvendelseskategori 1 kan indeholde en række forskellige brandrisici afhængig af virksomhedens og oplagets karakter. For at give eksempler på, hvorledes disse bygninger kan brandsikres, og som relaterer sig specifikt til den konkrete brug, opdeles industri- og lagerbygninger i én etage i anvendelseskategori 1 i fem industri- og lagerklasser (ILK 1 - 5). Klasserne adskiller sig fra hinanden ved den forventede:

- brandbelastning,
- brandtilvæksten i brandens vækstfase og
- stablingshøjden.

Brandbelastning

Brandtilvækstfaktor

Brandens forventede udvikling tidligt i brandforløbet (vækstfasen) er defineret ved brandtilvækstfaktoren \((\alpha) \), som fortæller, hvor hurtigt brandeffekten udvikler sig som funktion af tiden. Brandens tilvækst er en parameter, der beskriver et væsentligt risikomoment i relation til personssikkerheden, da den blandt andet giver en indikation af, hvor hurtigt der vil opstå kritiske forhold for personer i et rum. Dermed er brandtilvæksten væsentlig i forhold til bestemmelse af flugtvejslængder for personer, der opholder sig i bygningen. Brandens tilvækst har ligeledes indflydelse på, hvor stor en brand er, når redningsberedskabet kommer frem.

Tabel 9.1 angiver eksempler på traditionelt anvendte klasser for brandtilvækstfaktorer.

Tabel 9.1. Klasser for brandtilvækstfaktorer \(\alpha \)

<table>
<thead>
<tr>
<th>Brandtilvækstfaktor (\alpha) [kW/m²]</th>
<th>LANGSOM</th>
<th>MEDIUM</th>
<th>HURTIG</th>
<th>MEGET HURTIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,003</td>
<td>0,012</td>
<td>0,047</td>
<td>0,188</td>
<td></td>
</tr>
</tbody>
</table>

Bestemmelse af brandtilvækstfaktoren \((\alpha) \), fremgår i øvrigt af Information om brandteknisk dimensionering.

Stablingshøjde

Stablingshøjden er defineret som afstanden fra gulvets overside i et rum til overkanten af oplag, se også figur 9.1. Stablingshøjden for et bygningsafsnit bestemmes som den størst forekomne stablingshøjde i bygningsafsnittet. I figur 9.1 er stablingshøjden, \(H_1 \), den stablingshøjde, som er gældende for hele bygningsafsnittet.
Figur 9.1. Bestemmelse af stablingshøjde i en brandmæssig enhed, hvor oplaget har forskellig højde

En større stablingshøjde betyder, at der i forbindelse med brandens udvikling kan komme ”uheldige skorstene” eller ”en skorstenseffekt”, der kan sprede branden meget hurtigt i højden.

Fastlæggelse af industri- og lagerklasser

Den enkelte industri- og lagerklasse for det konkrete bygningsafsnit fastlægges på baggrund af kriterier for brandtilvækstfaktoren, brandbelastningen og stablingshøjden. Hvor flere parametre ikke giver samme klasse, vælges altid den højeste klasse.

Bygningsafsnit i ILK 1 er defineret som bygningsafsnit, der er indrettet med:

• meget lav brandbelastning, mindre end 250 MJ/m², hvor
• en brand vil udvikle sig ”langsamt”, \(\alpha = 0,003 \) kW/s, og som
• ingen begrænsning har på stablingshøjden.

Dette kan eksempelvis være lagerbygninger med ubrændbart oplag i ubrændbar emballage eller produktion og oplag af betonelementer eller tilsvarende ubrændbare produkter, hvor der kun indgår en lille mængde brændbart materiale i produktionen. Der er ingen grænse for stablingshøjden i disse bygningsafsnit. For denne klasse gøres særligt opmærk-

Bygningsafsnit i ILK 2 er defineret som bygningsafsnit, der er indrettet med:

- lav brandbelastning, mindre end 800 MJ/m², hvor
- en brand kan forudsættes at udvikle sig med en brandudvikling, der maksimalt er "hurtig", $\alpha=0,047$ kW/s² og som har
- en stablingshøjde på maksimalt 8 m.

Bygningsafsnit i ILK 3 er defineret som bygningsafsnit, der er indrettet med:

- en stor brandbelastning, som kan være større end 800 MJ/m², men som er mindre end 1600 MJ/m², hvor
- der kan forudsættes en "hurtig" brandudvikling, $\alpha=0,047$ kW/s², og som har
- en stablingshøjde på maksimalt 8 m.

Dette kan eksempelvis være lagerbygninger med ubrændbart oplag i brændbar emballage af pap eller papir. Oplaget kan være på paller af træ. Denne klasse vil tillige kunne omfatte produktionsbygninger, der ikke er omfattet af Beredskabsstyrelsens tekniske forskrifter.

Bygningsafsnit i ILK 4 er defineret som bygningsafsnit, der er indrettet med:

- en brandbelastning større end 1600 MJ/m², hvor
- der kan forudsættes en "meget hurtig" brandudvikling, $\alpha=0,118$ kW/s², og som har
- en stablingshøjde på maksimalt 8 m fra gulv.
Denne klasse omfatter de lagerbygninger, der i bygningsreglementet beskrives som værende lagerbygninger med en større brandbelastning. Dette kan eksempelvis være blandet brændbart oplag i brændbar emballage. Denne klasse ikke har nogen øvre grænse på brandbelastning og brandudviklingshastigheden er "meget hurtig". Dermed vil klassen kunne omfatte alle produktions- og lagerbygninger med alle typer oplag begrænset til en stablingshøjde på maksimalt 8 m. Dermed vil denne klasse også omfatte de bygningsafsnit, der tidligere var omfattet af Beredskabsstyrelsens tekniske forskrifter for visse brandfarlig virksomhed og oplag mv.

Bygningsafsnit i ILK 5 er defineret som bygningsafsnit, der er indrettet med:

- en brandbelastning større end 1600 MJ/m², hvor
- der kan forudsættes en "meget hurtig" brandudvikling, $\alpha=0,118$ kW/s², og som har
- en stablingshøjde på maksimalt 40 m.

Dermed omfatter denne klasse alle lagerbygninger med blandet brændbart oplag, brændbar emballage og en stablingshøjde på mere end 8 m. Bygninger i ILK 5, som er mindre end 600 m², kan ofte henføres til ILK 4.

Tabel 9.2. Oversigt over industri- og lagerklasser for bygningsafsnit i én etage

<table>
<thead>
<tr>
<th>INDUSTRI- OG LAGERKLASSE</th>
<th>BRANDBELASTNING [MJ/M²]*</th>
<th>BRANDTILVÆKST</th>
<th>STABLINGSHØJDE [M]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILK 1</td>
<td>Mindre end 250</td>
<td>Langsom</td>
<td>-</td>
</tr>
<tr>
<td>ILK 2</td>
<td>Fra 250 til 800</td>
<td>Hurtig</td>
<td>Maksimalt 8</td>
</tr>
<tr>
<td>ILK 3</td>
<td>Fra 800 til 1.600</td>
<td>Hurtig</td>
<td>Maksimalt 8</td>
</tr>
<tr>
<td>ILK 4</td>
<td>Større end 1.600</td>
<td>Meget hurtig</td>
<td>Maksimalt 8</td>
</tr>
<tr>
<td>ILK 5</td>
<td>Større end 1.600</td>
<td>Meget hurtig</td>
<td>Maksimalt 40</td>
</tr>
</tbody>
</table>

*Brandbelastningen relateres til gulvarealet. Se afsnit 9.1.1.

Der kan være flere industri- og lagerklasser i et bygningsafsnit, hvis det sikres, at sikkerhedsniveauet, som beskrevet i kap. 5.1 stk.1, er opfyldt.
9.2 Flugtvejsforhold

9.2.1 Generelt

Bygningsafsnit i industri- og lagerbygninger i anvendelseskategori 1 skal i henhold til bygningsreglement 2015, kap. 5.2, stk. 1, udføres på en sådan måde, at evakuering kan ske via flugtveje eller direkte til terræn i det fri eller et sikkert sted i bygningen.

Flugtvejene skal i henhold til kap. 5.2, stk. 2, være lette at identificere, nå og anvende, ligesom døre i flugtveje ifølge kap. 5.2, stk. 3, i bygningens brugstid skal være lette at åbne uden brug af nogle eller særligt værktøj.

Under evakuering af personer gælder ifølge bygningsreglementets kap. 5.2, stk. 4, at personerne ikke må udsættes for kritiske forhold i form af temperaturer, røggaskoncentrationer, varmestråling eller andre forhold, der kan forhindre en sikker evakuering.

Endeligt gælder ifølge kap. 5.2, stk. 9, at der i lagerbygninger, hvor stabilingshøjden er mere end 8 m samt i lagerbygninger med en større brandbelastning, ved indretning af bygningen skal tages særlig hensyn til omfanget og placeringen af udgangene og tilhørende gangarealer.

Formålet med flugtvejene er, at de personer, der opholder sig i bygningen, så hurtigt som muligt kan komme i sikkerhed i eller uden for bygningen i tilfælde af brand. Dette kan ske enten ved egen eller ved andres hjælp.

Flugtvejene bør derfor generelt udformes som gangarealer, beskyttede gange (flugtvejsgange) og beskyttede trapper (flugtvejstrapper), der ikke indrettes til andre formål end trafik. Indrettes flugtvejsgange alligevel til andre formål, er det vigtigt at sikre, at dette ikke reducerer gangenes anvendelighed som flugtvej eller medfører en væsentlig forøget brandbelastning eller brandrisiko.

I industri- og lagerbygninger i én etage vil flugtvejene typisk bestå af:

- udgang der fører til terræn i det fri,
- udgang til en udvendig trappe, der fører til terræn i det fri (eksempelvis fra en partielt indskudt etageadskillelse),
- udgang til en flugtvejsgang, der fører til terræn i det fri eller
• udgang til et sikkert sted, hvorfra der er adgang direkte til terræn i det fri.

Dermed starter selve flugtvejen fra eksempelvis et lagerrum ved udgangen fra rummet. For at sikre, at personer uhindret kan nå hen til en udgang, bør der være udlagt frie gangarealer. Disse gangarealer kan være i åben forbindelse med selve lageret, og der kan indgå interne trapper i forløbet, der ikke er brandmæssigt adskilt fra lagerrummet. Der er ikke særlige krav til udformningen af gangarealer i industri- og lagerbygninger.

Da bygningsafsnit i ILK 5, som er større end 600 m², udgør en særlig brandrisiko, bør der ikke føres flugtveje fra andre brandmæssige enheder i anvendelseskategori 2 - 6 gennem bygningsafsnit i ILK 5, som er større end 600 m².

For bygningsafsnit i anvendelseskategori 1, 2 og 3, hvor der fra alle bygningsafsnit er mindst én anden flugtvej, der fører til terræn i det fri, kan der etableres fælles flugtvejsgang med bygningsafsnit i ILK 5, der er større end 600 m², som vist på figur 9.2. I forbindelse med en fælles flugtvej eller flugtveje via et sikkert sted, gøres der opmærksom på, at der kan være supplerende regler, der gælder for flugtveje fra andre anvendelseskategorier.

Figur 9.2 Anvendelse af fælles flugtveje fra bygningsafsnit i ILK 5 større end 600 m²
Bygningsafsnit i ILK 1 – 4 kan indgå som sikkert sted for andre anvendelseskategorier. Der bør her ligeledes tages højde for, at der kan være supplerende regler for udformning af flugtveje fra andre anvendelseskategorier.

I afsnit 2 beskrives, hvorledes et sikkert sted kan indgå i et flugtvejssystem. For industri- og lagerbygninger gøres der opmærksom på, at gangarealerne i det sikre sted på let og betryggende vis skal kunne anvendes til at nå terræn i det fri. Der bør derfor ikke være truckkørsel, automatræge el. lign i den del af bygningsafsnittet, der anvendes til evakuering. Tilsvarende bør der etableres flugtvejs- og panikbelysning i gangarealer i rum, der ikke er belyste ved normal drift.

Flugtveje skal tillige opfylde bestemmelserne i bygningsreglement 2015, kap. 3.2, om adgangsforhold.

Branddøre, der forventeligt bliver benyttet meget, eller der ønskes fastholdt i åben stilling, bør installeres med et automatisk branddørlukningsanlæg (ABDL-anlæg) for at sikre, at døren er lukket i tilfælde af brand.

9.2.2 Antal flugtveje

Bestemmelserne i bygningsreglement 2015, kap. 5.2, stk. 1 - 4 og stk. 9, medfører, at der skal etableres tilstrækkelige udgange fra en industri- og lagerbygning til at sikre, at personer kan forlade bygningen på sikker vis.

I det efterfølgende er en udgang defineret som:

- en dør til terræn i det fri, evt. via vindfang,
- en dør til flugtvejsgang i en anden brandmæssig enhed,
- en dør til en trappe, der er flugtvej eller
- en dør til et sikkert sted i anden brandsektion.
Industri- og lagerbygninger kan udformes på forskellig vis med mindre rum, større rum eller som ét stort rum. Hvis bygningerne er udformet med flere mindre rum, kan udgangene typisk være en dør til en flugtvejsgang, en dør til det fri eller en dør til et sikkert sted. Fra større rum vil udgangene ofte føre til et sikkert sted eller direkte til det fri.

Det nødvendige antal udgange bør for det enkelte bygningsafsnit bestemmes på baggrund af bygningens brandmæssige opdeling og størrelse, placeringen af udgangene samt brug og indretning af rummene.

Udgangene bør placeres, så personer altid har adgang til mindst én udgang, uanset hvor en brand måtte opstå. Dette vil sædvanligvis kunne ske ved, at der udlægges gangarealer, der i modstående ender har adgang f.eks. som vist på figur 9.3.

![Figur 9.3. Gangarealer i brandmæssige enheder i industri- og lagerbygninger under 600 m²](image)

For brandmæssige enheder, der er mindre end 600 m², vil det, uanset bygningsafsnittets industri- og lagerklasse, normalt være tilstrækkeligt med to udgange placeret i modstående ender af den brandmæssige enhed, som det er vist på figur 9.3.

Fra brandmæssige enheder mindre end 150 m² vil det ofte være tilstrækkeligt med én udgang, såfremt der etableres redningsåbninger fra enheden, som det er beskrevet i afsnit 2.7. Hvor udgangen fører direkte til terræn i det fri, vil der ikke være behov for redningsåbninger.
Principperne for brug af flugtvejsgange og flugtveje via et andet rum, der fremgår af afsnit 2, kan tillige anvendes, idet der kan tages afsæt i eksemplerne for anvendelseskategori 1.

For brandmæssige enheder, der er større end 600 m², kan det være nødvendigt med flere udgange, og der bør være mindst to af udgangene, der uafhængigt af hinanden fører til terræn idet fri. Udgangene bør placeres i modstående ender af den brandmæssige enhed. Udgangene, som er vist på figur 9.3, kan f.eks. anses som værende i modstående ender.

Da en brand kan udvikle sig hurtigt i nogle industri- og lagerbygninger, er det væsentligt, at personer hurtigt kan nå frem til en udgang. Derfor bør afstanden, som personer skal gå (gangafstanden) for at nå frem til en udgang, tilpasses de risikoforhold og den indretning, der er i bygningen.

Industri- og lagerklasserne relaterer sig til, hvor hurtigt en brand kan udvikle sig. Disse klasser kan derfor anvendes som grundlag for valg af den længste gangafstand til nærmeste udgang, idet gangafstanden bør være kortere, jo hurtigere branden kan udvikle sig. I tabel 9.3 er der angivet eksempler på gangafstande, og hvorledes gangafstande kan vælges for de forskellige industri- og lagerklasser.

![Figur 9.4. Måling af skrå ganglinje](image-url)
Tabell 9.3. Maksimal gangafstand til nærmeste udgang for forskellige industri- og lagerklasser

<table>
<thead>
<tr>
<th></th>
<th>ILK 1</th>
<th>ILK 2</th>
<th>ILK 3</th>
<th>ILK 4</th>
<th>ILK 5, SOM ER STØRRE END 600 M²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gangafstand til nærmeste udgang [m]</td>
<td>60</td>
<td>45</td>
<td>45</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

I brandmæssige enheder, der er indrettet med reoler, vil der ofte være blinde ender mellem reolerne. Det kan accepteres, at der er blinde ender i gangarealer udlagt mellem reoler på indtil 5 m uden yderligere foranstaltninger. Længere blinde ender mellem reoler på optil 15 m kan dog ofte accepteres, såfremt ganglængden fra den blinde ende forøges med 50 % i forhold til den faktiske længde af den blinde ende. Se figur 9.5.

![Diagram](image)

Ganglængde:

\[G = A + B + C, \text{ hvis } A < 5 \text{ m} \]
\[G = 1,5 \times A + B + C, \text{ hvis } A \text{ er mellem } 5 \text{ m og } 15 \text{ m} \]

Figur 9.5. Beregning af gangafstande ved blinde ender

I nogle tilfælde kan færre udgange og længere afstande til udgange accepteres på baggrund af en konkret dokumentation for det enkelte bygningsafsnit. Ved udarbejdelse af denne dokumentation bør det eftervises, at personer under evakuering ikke udsættes for kritiske forhold, som det er beskrevet i bygningsreglement 2015, kap. 5.2, stk. 4. Rumhøjden samt supplerende brandtekniske installationer, såsom automatisk varsel, er forhold, der i nogle tilfælde kan anvendes til at godtgøre, at en længere afstand til en udgang kan accepteres. Det bør i dokumentationen også beskrives, hvorledes sikkerheden tilgodeses for servicepersonale, der eventuelt måtte opholde sig kortvarigt i bygningen, og som ikke kender flugtvejsforholdene. En driftsinstruks, der adresserer disse forhold, kan indgå i denne dokumentation.

Der gøres i øvrigt opmærksom på, at eksemplerne, som er angivet i afsnit 9.6 om redningsberedskabets indsatveje, kan få indflydelse på placeringen af udgangene fra den brandmæssige enhed.

9.2.3 Brandmæssig adskillelse af flugtveje

Det fremgår af bygningsreglement 2015, kap. 5.2, stk. 4, at flugtveje skal være udført, så de kan anvendes til evakuering i den tid, der er nødvendig for at evakuere bygningen.
Da en flugtvej skal kunne anvendes i hele evakueringstiden, er det vigtigt, at flugtvejen, som f.eks. er udformet som en gang, udgør en selvstændig brandmæssig enhed. For at sikre, at en brand ikke påvirker flugtvejen, kan gange derfor f.eks. udformes som selvstændige brandcel ler.

I bygninger, hvor der er korte flugtveje og gode redningsmuligheder, kan der etableres udvendige trapper, som ikke er brandmæssigt adskilt fra bygningen. Dette kan eksempelvis være udgange til udvendige trapper fra en partielt indskudt etageadskillelse, hvor trappen ikke passerer andre brandmæssige enheder end den enhed, som trappen betjener.

Normalt vil døre i brandmæssige adskillelser skulle have den samme brandmodstandsevne som den brandmæssige adskillelse. For døre mellem en flugtvejsgang, som er udført som en brandcelle, og de rum, som gangen betjener, vil det dog ofte være tilstrækkeligt at udføre døren med den halve brandmodstandsevne. Døre fra flugtvejsgang til lagerrum, depotrum mv. bør udføres som EI, 30-C [BD-dør 30].

Døre mellem en flugtvejsgang, som er udført som en brandcelle, og toiletter og baderum, der også er selvstændige brandceller i forhold til de øvrige rum, kan udføres uden brandmodstandsevne, da brandbelastningen normalt er meget lav i disse rum.

Der henvises i øvrigt til afsnit 2 for nærmere beskrivelse af udførmning af flugtvejene.

9.2.4 Redningsåbninger

Bygningsreglement 2015, kap. 5.2, stk. 6 og 7, angiver krav om redningsåbninger. Ovenstående eksempler tager hovedsageligt udgangspunkt i, at der er to udgange fra enhver brandmæssig enhed, der er mindre end 600 m². Hvor disse udgange fører til to flugtveje, der uafhængigt af hinanden fører til terræn i det fri, er bygningsreglementets krav om redningsåbninger tilgodeset. For brandmæssige enheder, hvor udgangene ikke fører til to af hinanden uafhængige flugtveje, henvises der til afsnit 2.7.
9.3 Konstruktive forhold

Det fremgår af bygningsreglement 2015, kap. 5.3, stk. 1, at byggevarer og bygningsdele skal udføres, så personer, som opholder sig i bygningen, kan bringe sig i sikkerhed på terræn i det fri eller et sikkert sted i bygningen, og så redningsberedskabet har mulighed for redning og sluknings-arbejde.

Der henvises til afsnit 3.1 for en nærmere beskrivelse af brandteknisk klassifikation af byggevarer og bygningsdele.

9.3.1 Isoleringsmaterialer i bygningsdele

Når der anvendes isoleringsmaterialer, er det vigtigt, at de anvendes på en sådan måde, at det ikke medfører en øget personrisiko. Ved et isoleringsmateriale forstås i denne sammenhæng ethvert materiale, der har en densitet, som er mindre end 300 kg/m³. Dette afsnit omfatter ikke andre plastbaserede byggevarer end de egentlige isoleringsmaterialer, f.eks. ikke eldåser og -rør, faldstammer, ventilationsdele, kabelisolering, montageskum og lignende.

På denne baggrund vil det normalt være i overensstemmelse med bygningsreglement 2015, kap. 5.3, stk. 1, at anvende isoleringsmaterialer, som er beskrevet i tabel 9.4.

Tabel 9.4. Anvendelse af isoleringsmaterialer i bygningsafsnit i industri- og lagerbygninger i én etage afhængigt af industri- og lagerklasser

<table>
<thead>
<tr>
<th>BYGNINGSAFSNIT</th>
<th>ISOLERINGSMATERIALER BØR MINDST UDFØRES SOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILK 1</td>
<td>Materiale klasse B-s1 d0 [klasse A materiale]</td>
</tr>
<tr>
<td>ILK 2</td>
<td>Materiale klasse B-s1,d0 [klasse A materiale]</td>
</tr>
<tr>
<td>ILK 3</td>
<td>Materiale klasse B-s1,d0 [klasse A materiale]</td>
</tr>
<tr>
<td>ILK 4</td>
<td>Materiale klasse B-s1,d0 [klasse A materiale]</td>
</tr>
<tr>
<td>ILK 5, som er større end 600 m²</td>
<td>Materiale klasse A2-s1,d0 [ubrændbart materiale]</td>
</tr>
</tbody>
</table>
Isoleringsmaterialer, som ikke opfylde ovenstående klassifikationer, kan dog stadig anvendes. Nedenfor er der anført eksempler på, hvordan mere brændbar isolering kan anvendes i forskellige bygningsafsnit i forskellige industri- og lagerklasser.

1. **Til udvendig isolering af bygningsafsnit i ILK 1 - 4 samt bygningsafsnit i ILK 5 mindre end 600 m² med ydervägge af letbeton, beton eller murværk er det tillige ofte muligt at anvende isoleringsmaterialer, som ikke mindst er materiale klasse B-s1, d2:**

 Når den udvendige beklædning og isoleringen er prøvet som et samlet facadesystem i SP FIRE 105, og det dokumenteres, at facadesystemet overholder nedenstående prøvningskriterier ved brandprøvning efter brandprøvningsmetode SP FIRE 105:

 a) Der må ved prøvningen ikke falde store dele ned, f.eks. store pudsstykker, plader eller lignende, som kan udgøre en fare for personer under evacuering eller for redningsmandskabet.

 b) Brandspredning på overfladen samt i væggen skal ved brandprøvningen begrænse til underkanten af vinduet, der er to etager over brandrummet, og der må ikke opstå flammer udendigt, som ved prøvningen kan give anledning til antændelse af tagudhæng, som er beliggende over vinduet, der er to etager over brandrummet. Alternativ må røggastemperaturen under prøvningen umiddelbart under tagudhænget ikke overstige 500 °C i en sammenhængende periode på mere end 2 minutter eller 450 °C i mere end 10 minutter. Kriteriet er et udtryk for, hvor meget det samlede facadesystem bidrager til brandens udvikling.

Det bemærkes, at ovenstående prøvningsmetode, som beskrevet i standarden, omfatter en facadekonstruktion i to etager. Metoden er dog stadig valid for brandspredning i et facadesystem for en bygning i én etage.

Facadesystemerne skal monteres i overensstemmelse med leverandørens montagevejledning.

2. **I bygningsafsnit i ILK 1 - 4 samt bygningsafsnit i ILK 5 med bygningsafsnit mindre end 600 m² kan isoleringsmaterialer, som ikke mindst er materiale klasse B-s1,d0 [klasse A materiale], tillige anvendes efter følgende tre principper:**
a) Isoleringsmaterialer, der mindst er materiale klasse D-s2,d2 [klasse B materiale], kan anvendes med de begrænsninger, der i den konkrete sammenhæng gælder for alle andre materialer.

b) Isoleringsmaterialer, der ikke mindst er materiale klasse D-s2,d2 [klasse B materiale], kan anvendes, når isoleringsmaterialet er afdækket med mindst beklædning klasse K, 10 B-s1,d0 [klasse 1 beklædning] langs begge sider af en lodret bygningsdel og langs undersiden af en vandret eller skråtstillet bygningsdel, såfremt der ikke er hulrum mellem isoleringsmaterialet og beklædningen. Se figur 9.7.

Figur 9.7. Eksempler på udformning på inddækning af isolering, der ikke mindst er materialeklasse B-s1,d0 [klasse A materiale] i bygningsafsnit i ILK 1 - 4 samt bygningsafsnit i ILK 5 mindre end 600 m²

Figur 9.8. Eksempler på udformning på inddækning af isolering, der ikke mindst er materialeklasse B-s1,d0 [klasse A materiale] i bygningsafsnit i ILK 1 - 4

1. I bygningsafsnit i ILK 1 - 5 kan isolering, som ikke mindst er materiale klasse A2-s1,d0[ubrændbart materiale], anvendes på følgende måde:

 a) I ydervægge kan der anvendes isolering, som mindst er klasse D-s2,d2 [klasse B materiale], såfremt isoleringen på begge sider er adfækket med en (R)EI 60 A2-s1,d0 [BS-bygningsdel 60]. Se figur 9.9.

Figur 9.9. Eksempel på lodret bygningsdel med isolering der ikke er materialeklasse A2-s1,d0 [ubrændbart materiale]
b) På tage kan der anvendes isolering, udført som mindst materiale klasse D-s2,d0 [klasse B materiale], såfremt det ligger på en bygningsdel, der er udført som mindst (R)EI 60 A2-s1,d0 [BS-bygningsdel 60]. Denne isolering bør endvidere opdeles i felter på maksimalt 1.000 m² med bælter af isolering udført som mindst materiale klasse A2-s1,d0 [ubrændbart materiale] med en bredde på mindst 2,5 m.

4. I frost- og kølelager i bygningsafsnit i ILK 1 – 5, som har en bygningshøjde på maksimalt 25 m, og som er opvarmet til maksimalt 6 °C, kan isoleringsmaterialer, som ikke mindst er A2-s1,d0, anvendes i de omgrænsende bygningsdele på følgende måder:

Facadesystemer, som er beskrevet i pkt. 1 (brandprøvet efter SP FIRE 105), kan anvendes i brandmæssige enheder med et etageareal på maksimalt 2000 m². Facadesystemer kan også anvendes inde i en brandmæssig enhed til afgrænsning af frost- og kølelager. Såfremt der er installeret et fulddækkende sprinkleranlæg, iltreruderende anlæg eller lignende, kan bagvæg af letbeton, beton eller murværk undlades. Dette er relevant, hvor der ønskes at anvende sandwichpaneler.

Bagvæggen kan undlades, selvom sandwichpanel er testet med bagvæg i SP FIRE 105. I så fald bør sandwichpanelet på indersiden have de samme brandtekniske egenskaber, som den udvendige side af facadesystemet har ved brandprøvning ifølge SP FIRE 105, og som det er beskrevet i det første af de fire eksempler for oven. Dette kan eksempelvis være tilfældet for sandwichpaneler, der er opbygget efter samme principper indvendigt som udvendigt, og hvor tykkelsen af sandwichpanelet i øvrigt er den samme som ved brandprøvningen.

Det er væsentlig at være opmærksom på, at isoleringsmateriale, der ikke er henholdsvis materiale klasse B-s1,d0 [klasse A materiale] eller materiale klasse A2-s1,d0 [ubrændbart materiale], afdækkes langs alle bygningsdelenes flader, så isoleringsmaterialet ingen steder er blotlagt. Dette er væsentlig for at opretholde tilfredsstillende brandsikkerhed.

Afdækningen er særlig vigtig langs bygningsdelenes kanter og langs åbninger i bygningsdelene, for eksempel langs sokkel og langs åbninger til vinduer og døre, men også ved udtag til ventilation mv. Eksempler på, hvor dette kan være relevant, er vist på figur 3.6 i afsnitt 3.

Det bør sikres, at overfladerne på systemer med isoleringsmaterialer, der ikke mindst er materiale klasse D-s2,d2 [klasse B materiale], er robuste

Ved montage af isoleringsmateriale, der ikke mindst er materiale klasse D-s2,d2 [klasse B materiale], er det vigtigt, at der tages hensyn til risikoen for antændelse af isoleringsmateriale, som endnu ikke er afdækket. Det kan derfor være hensigtsmæssigt, at isoleringsmaterialet løbende afdækkes under byggeprocessen, og at evt. antændelseskilder holdes under kontrol.

For bygningsafsnit i ILK 5, der er større end 600 m² med vægkonstruktioner, der indeholder isoleringsmaterialer, der er ringere end A2-s1,d0 [ubrændbart materiale], markeres dette synligt på bygningsdelen med et skilt med teksten ”brændbar isolering”.

Hvor ydervægge med isolering, der ikke er mindst materiale klasse A2-s1,d0 [ubrændbart materiale], sammenbygges med brandadskillende bygningsdele, er det ligeledes væsentligt at sikre, at branden ikke spreder sig til andre brandmæssige enheder via isoleringsmaterialet. Dette er beskrevet nærmere i afsnit 9.5.3.

9.3.2 Bærende bygningsdele
Som det fremgår af bygningsreglement 2015, kap. 5.3, stk. 1, skal bærende bygningsdele udføres, så personer, som opholder sig i bygningen, kan bringe sig i sikkerhed på terræn i det fri eller et sikkert sted i bygningen, og så redningsberedskabet har mulighed for rednings- og slukningsarbejde.

For at undgå pludselige svigt i bygningsdele under en brand i en bygning er det vigtigt, at bygningsdelene udføres på en sådan måde, at de ikke understøttes eller stabiliseres af andre bygningsdele, der har en utilstrækkelig brandteknisk klassifikation/brandmodstandsevne.

For bygningsafsnit, der jf. definitionerne i denne eksempelsamling, falder ind under ILK 5, gør bygningsreglement 2015, kap. 5.3, stk. 5, opmærksom på, at de særlige risikoforhold, der er i denne type bygninger, fører til, at der skal være særlig opmærksomhed på, at de bærende bygnings-
dele udformes, så de brandadskillende bygningsdeles brandmodstandsevne ikke forringes.

Der kan være tilfælde, hvor det er brandmodstandsevnen af de brandmæssige adskillelser og ikke brandmodstandsevnen relateret til bæreevnen, som er dimensionsgivende. Der henvises til afsnit 9.5.2 for bestemmelse af brandmodstandsevne af de brandmæssige adskillelser i form af brandceller og brandsektioner.

De dele af en tagkonstruktion, som kun skal bære sig selv og naturlasten, kan udføres uden brandmodstandsevne, medmindre et svigt i disse dele af tagkonstruktionen har indflydelse på bygningens afstivende system overfor vandrette laster eller på andre bærende eller ikke-bærende bygningsdeles brandmodstandsevne.

Med hensyn til dimensionering af bærende konstruktioners bæreevne under brand henvises der til bygningsreglement 2015, kap. 4.2.

Bærende bygningsdele kan bl.a. omfatte vægge, søjler, bjælker, etageadskillelser, altangange og altaner samt trapper.

I tabel 9.5 angives der eksempler på brandmodstandsevne for de bærende bygningsdele.
Tabel 9.5. Eksempler på brandmodstandsevne for bærende bygningsdele

<table>
<thead>
<tr>
<th>INDUSTRI- OG LAGERKLASSE</th>
<th>BRANDMODSTANDSEVNE AF BÆRENDE BYGNINGSDELE</th>
</tr>
</thead>
</table>
| ILK 1 – 4 samt bygningsafsnit i ILK 5, der er mindre end 600 m² | Bygningsdel i klasse R 30 [BD-bygningsdel 30], hvis bygningen er op til 1000 m². Bygningsdel klasse R 60 [BD-bygningsdel 60], hvis bygningen er mere end 1000 m². I en bygning med let tagkonstruktion og med jævnt fordelt brandventilation i tagfladen kan de bærende bygningsdele i bygningen udføres uden krav til brandmodstandsevne, hvis bygningen er under 1.000 m². I bygninger over 1.000 m² kan de bærende bygningsdele udføres:
 - som bygningsdel klasse R 30 [BD-bygningsdel 30], hvis bygningsdelen bærer mere end 200 m² tag,
 - som bygningsdel klasse R 60 [BD-bygningsdel 60], hvis bygningsdelen bærer mere end 600 m² tag,
 - uden krav til brandmodstandsevnen for øvrige bygningsdele.
| ILK 5 med bygningsafsnit større end 600 m² | For bygninger med brandsektioner på indtil 600 m² udføres brandmodstandsevnen på følgende vis:
 - Bygningsdel klasse R 30 [BD-bygningsdel 30], hvis bygningen er op til 1000 m².
 - Bygningsdel klasse R 60 [BD-bygningsdel 60], hvis bygningen er mere end 1000 m².
For bygninger med brandsektioner på over 600 m² udføres de bærende bygningsdele som R 120 A2-s1,d0 [BS-bygningsdel 120].
Bærende bygningsdele, der ikke er afgørende for bygningens overordnede stabilitet og konstruktionselementer, og som ved svigt vil medføre kollaps af mindre end 400 m² tagflade, kan udføres som mindst bygningsdel klasse R 60 A2-s1,d0 [BS bygningsdel 60]. |

*Hensynet bag kravet til brandventilation er at aflaste rummet for varme således, at opvarmningen af de bærende bygningsdele reduceres. Andre åbningsarealer kan anvendes, såfremt det dokumenteres, at der ikke sker svigt af de bærende konstruktioner for den konkrete udformning af brandventilationen.

Som alternativ til eksemplerne i tabel 9.5 kan de bærende bygningsdele i industri- og lagerbygninger i én etage i ILK 1 - 5 med et automatisk sprinkleranlæg og let tagkonstruktion udføres som R 15 A2-s1,d0.

Der gøres her opmærksom på, at de bærende bygningsdele, der understøtter de brandmæssige adskillelser, jf. bygningsreglement 2015, kap. 5.3, stk. 2, ikke må have en ringere brandmodstandsevne end den adskillende bygningsdel. Da sprinkleranlægget kan være fastgjort til de bærende bygningsdele, bør det endvidere sikres, at deformationer af de bærende bygningsdele ikke påvirker anlæggets funktion.

Én-etages industri- og lagerbygninger ønskes ofte udført med en partiel, indskudt etageadskillelse. Ved en partiel indskudt etageadskillelse forstår en tæt etageadskillelse, hvis størrelse ikke overstiger 75 % af den
pågældende brandsektions areal. Normalt vil en partiel indskudt etageadskillelse, der højst er 150 m², samt de bygningsdele, der bærer denne, kunne udføres uden krav til brandmodstandsevne. For større partielle indskudte etageadskillelser bør de bærende bygningsdele have samme brandmodstandsevne som de øvrige bærende bygningsdele.

9.3.3 Sammenbygning af bygningsdele
Der henvises til afsnit 3.4.

9.4 Brandtekniske installationer
Det fremgår af bygningsreglement 2015, kap. 5.1, stk. 1, at bygninger skal opføres, så der opnås tilfredsstillende tryghed mod brand og mod brændspredning til andre bygninger på egen og på omkringliggende grunde. Der skal ligeledes være forsvarlige muligheder for redning af personer og for slukningsarbejde.

Det fremgår derfor af bygningsreglement 2015, kap. 5.4, at det for forskellige anvendelseskategorier er nødvendigt at supplere den passive brandsikring med brandtekniske installationer.

Brandtekniske installationer skal udføres, så de er pålidelige samt kan kontrolleres og vedligeholdes i hele bygningens levetid.

9.4.1 Valg af brandtekniske installationer
Vedrørende standarder, forskrifter, anvisninger mv. henvises til afsnit 1.6 Brug af brandtekniske installationer. Brandtekniske installationer generelt er i øvrigt beskrevet i afsnit 4.1.

Af bygningsreglement 2015, kap. 5.4, fremgår kravene til brandtekniske installationer for industri- og lagerbygninger i anvendelseskategori 1. Relateres kravene til brandtekniske installationer til industri- og lagerklasserne, kan:

- bygningsafsnit i ILK 1 og 2 relateres til bygningsafsnit med lav brandbelastning,
- bygningsafsnit i ILK 3 og 4 relateres til bygningsafsnit med høj brandbelastning og
- bygningsafsnit, hvor stablingshøjden er over 8 m, og der er en større brandbelastning, relateres til ILK 5.

Bygningsafsnit i ILK 1 er defineret ved, at brandbelastning er meget lav,
og en eventuel brand vil spredes langsomt. Det betyder, at en brand vil være så lille, at det ikke er nødvendigt at installere et sprinkleranlæg for at opnå tilstrækkelig personssikkerhed og sikring mod brandspredning. Dermed vil det for sådanne bygningsafsnit ifølge bygningsreglement 2015, kap. 5.4, stk. 18, være tilstrækkeligt, hvis bygningsafsnit over 2000 m\(^2\) sikres med et automatisk brandalarmanlæg og automatisk brandventilation jf. tabel 9.6.

De brandtekniske installationer for industri- og lagerbygninger i én etage kan vælges, som det er angivet i tabel 9.6.

Tabel 9.6. Oversigt over valg af brandtekniske installationer til industri- og lagerbygninger

<table>
<thead>
<tr>
<th>INDUSTRI- OG LAGERKLASSE</th>
<th>AUTOMATISK SPRINKLERANLÆG</th>
<th>AUTOMATISK BRANDALARMANLÆG</th>
<th>AUTOMATISK BRANDVENTILATIONSANLÆG</th>
<th>SLANGEVINDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILK 1</td>
<td></td>
<td>Bygningsafsnit større end 2.000 m(^2) (^{a)})</td>
<td>Rum større end 1.000 m(^2)</td>
<td>Bygningsafsnit større end 1.000 m(^2)</td>
</tr>
<tr>
<td>ILK 2</td>
<td>Bygningsafsnit større end 5.000 m(^2)</td>
<td>Bygningsafsnit større end 2.000 m(^2) (^{a)})</td>
<td>Rum større end 1.000 m(^2)</td>
<td>Bygningsafsnit større end 1.000 m(^2)</td>
</tr>
<tr>
<td>ILK 3 og 4</td>
<td>Bygningsafsnit større end 2.000 m(^2)</td>
<td>Bygningsafsnit større end 2.000 m(^2) (^{a)})</td>
<td>Rum større end 1.000 m(^2)</td>
<td>Bygningsafsnit større end 1.000 m(^2)</td>
</tr>
<tr>
<td>ILK 5 med bygningsafsnit større end 600 m(^2)</td>
<td>Bygningsafsnit større end 600 m(^2)</td>
<td>Bygningsafsnit med en stablingshøjde større end 10 m og med et etageareal større end 5000 m(^2)</td>
<td>Bygningsafsnit større end 1.000 m(^2)</td>
<td></td>
</tr>
</tbody>
</table>

\(^{a)}\) Kan undlades, hvis bygningen er sprinklet.

Frost- og kølelagre

Det iltreducerende anlæg kan imidlertid ikke registrere en brand eller alarmere redningsberedskabet. Disse funktioner kan f.eks. tilgodeses
ved også at installere et automatisk brandalarmanlæg. For bygningsafsnit med iltreducerende anlæg kan brandens størrelse forventes at svare til en brand i sammenlignelige bygningsafsnit, der er sprinkled. Derfor kan brandventilation ofte undlades i bygningsafsnit med iltreducerende anlæg.

Rum over 1.000 m²

Bygningsreglement 2015, kap. 5.4, stk. 8, beskriver, at der i anvendelseskategori 1 enten skal installeres automatisk brandventilation eller automatisk sprinkleranlæg i rum, som er større end 1000 m². Hensigten med kap. 5.4, stk. 8, er at sikre, at der i store rum ikke opstår brande, som ikke umiddelbart kan kontrolleres. Udgangspunktet er, at der i disse rum er brandventilation, som kan aflaste rummet for røg og varme, så det bliver muligt at foretage en acceptabel slukningsindsats, inden der opstår overtænding i rummet. Da bygningsafsnit i ILK 5 normalt er sprinkled, er dette ikke relevant for bygningsafsnit i denne klasse.

Rum er i denne forbindelse enheder, der er adskilt fra andre enheder med vægge og døre af f.eks. uklassificerede bygningsdele.

Udformes brandventilationen efter DS/EN 12101-2 Brandventilation, vil et aerodynamisk frit åbningsareal på mindst 10 m² pr. røgzone for bygningsafsnit i ILK 1 - 3 og 24 m² pr. røgzone for bygningsafsnit i ILK 4 ofte være tilstrækkeligt. I høje rum kan dette areal reduceres, og i lavloftede rum med en rumhøjde under 4,0 m bør åbningsarealet evt. forøges.

Partielt indskudt etageadskillelse

Er der brandventilation i et lokale, er det vigtigt, at der tages højde for, at effekten af brandventilationen ikke reduceres væsentligt på grund af forskudte etageadskiller. Normalt vil en mindre partielt indskudt etageadskillelse, som er placeret hensigtsmæssigt, ikke reducere brandventilationens effekt væsentligt.
9.5 Sikring mod brand- og røgspredning

9.5.1 Sikring mod brand- og røgspredning i det rum, hvor branden opstår

Indvendige overflader på væg, loft og gulv

Ifølge bygningsreglement 2015, kap. 5.5.1, stk. 1, skal indvendige væg- og loftoverflader samt gulvbelægninger udføres på en sådan måde, at de ikke bidrager væsentligt til brand- og røgudviklingen i den tid, som personer, der opholder sig i rummet, skal bruge til at forlade rummet. For flugtveje gælder tilsvarende krav, jf. bygningsreglement 2015, kap. 5.2, stk. 5.

I nedenstående tabel 9.7 er der givet en række eksempler på, hvordan indvendige overflader kan udføres.

Tabel 9.7: Eksempler på udførelse af indvendige beklædninger i industri- og lagerbygninger

<table>
<thead>
<tr>
<th>VÆGBEKLÆDNING</th>
<th>LOFTBEKLÆDNING</th>
<th>GULVBELÆGNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generelt</td>
<td>Beklædning klasse K, 10 B-s1,d0 [klasse 1 beklædning]</td>
<td>Beklædning klasse K, 10 B-s1,d0 [klasse 1 beklædning]</td>
</tr>
<tr>
<td></td>
<td>En ydervæg, som udelukkende består af materiale klasse B-s1,d0 [klasse A materiale], anses at opfylde kravene.</td>
<td></td>
</tr>
<tr>
<td>Bygninger med brandcelle på indtil 1.000 m²</td>
<td>Beklædning klasse K, 10 D-s2,d2 [klasse 2 beklædning]</td>
<td>Beklædning klasse K, 10 D-s2,d2 [klasse 2 beklædning]</td>
</tr>
<tr>
<td>ILK5</td>
<td>Beklædning klasse K1 10 B-s1,d0 [klasse 1 beklædning]</td>
<td>Beklædning klasse K1 10 B-s1,d0 [klasse 1 beklædning]</td>
</tr>
<tr>
<td></td>
<td>Gulvbelægning klasse Dfl-s1 [klasse G gulvbelægning]</td>
<td></td>
</tr>
</tbody>
</table>

Note: Overflader i flugtveje kan udføres, som det er beskrevet i tabel 5.2.

I tabel 9.7 anføres, at nogle overflader på væg eller loft bør udføres som mindst beklædningsklasse K, 10 B-s1,d0 [klasse 1 beklædning]. Dette er valgt for at få en meget begrænset brandspredning i beklædningen. For disse overflader er det dog normalt acceptabelt, at mindre dele af overfladerne kan udføres med en ringere klasse. Her kan op til 20 % af væg- og loftoverfladerne i et rum i et bygningsafsnit i ILK 1 - 4 udføres som mindst beklædningsklasse K, 10 D-s2,d2 [klasse 2 beklædning]. Det forudsættes, at vægoverfladerne henholdsvis loftoverfladerne, som op-
fylder de ovenfor angivne eksempler, er jævnt fordelt i rummet og dermed ikke udført som ét sammenhængende areal. Overfladearealerne er defineret som de overflader, der er eksponerede ved en fuldt udviklet brand.

For rum i bygningsafsnit i ILK 5 er det normalt acceptabelt, at de nederste 2,5 m er udført som mindst beklædningsklasse K₁ 10 D-s2,d2 [klasse 2 beklædning]. I så fald bør den resterende del af overflader på vægge og lofter udføres med mindst beklædningsklasse K₁ 10 B-s1,d0 [klasse 1 beklædning].

Disse eksempler gælder ikke for beklædninger i flugtveje.

I frost- og kølelagre, hvor vægge som er udført med isoleringsmaterialer, som det er beskrevet i afsnit 9.3, punkt 4, eksempelvis sandwichpaneler, anses de indvendige beklædninger som værende tilfredsstillende.

Nedhængte lofter

Der kan være et ønske om at anbringe et nedhængt loft under en tagkonstruktion. Et nedhængt loft er et loft, som ikke opfylder kravene til beklædningsklasse K₁ 10 B-s1,d0 [klasse 1 beklædning] eller til beklædningsklasse K₁ 10 D-s2,d2 [klasse 2 beklædning]. Nedhængte lofter inklusiv ophængningssystemet bør ikke bidrage til brand- og røgspredningen i den tid, som personer, der opholder sig i rummet, skal bruge til at forlade rummet. For at opnå dette, kan nedhængte lofter udføres af materialer, som er mindst materiale klasse B-s1,d0 [klasse A materiale].

I bygningsafsnit i ILK 5, som er større end 600 m², bør der kun efter en konkret vurdering etableres nedhængte lofter. Denne vurdering bør omfatte en dokumentation af, at der ikke kan ske en skjult brandspredning over et nedhængt loft.

Rør- og kabelinstallationer

Der henvises til afsnit 5.1.3.
9.5.2 Sikring mod brand- og røgspredning i den bygning, branden opstår i, og til bygninger på samme grund

Udvendige vægoverflader
Ifølge bygningsreglement 2015, kap. 5.5, stk. 1, skal spredning af brand og røg til andre brandmæssige enheder forhindres i den tid, som er nødvendig for evakuering. Ligeledes skal overflader og tagdækninger udføres på en sådan måde, at de ikke giver et væsentligt bidrag til brandspredningen.

I tabel 9.8 gives der en række eksempler på, hvorledes udvendige vægoverflader på en industri- og lagerbygning kan udføres.

Tabel 9.8. Eksempler på udførelser af udvendige vægoverflader

<table>
<thead>
<tr>
<th>BYGNINGSAFSNIT</th>
<th>UDVENDIGE VÆGOVERFLADER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILK 1 - 4 samt bygningsafsnit i ILK 5, der er mindre end 600 m²</td>
<td>Beklædning klasse K1 10 D-s2,d2 [klasse 2 beklædning] eller ydervæg med udvendig overlade klasse D-s2,d2.</td>
</tr>
<tr>
<td>ILK 5</td>
<td>Beklædning klasse K1 10 B-s1,d0 [klasse 1 beklædning]</td>
</tr>
</tbody>
</table>

Hvor bygningen i øvrigt har et facadesystem, som opfylder kriterierne, der er beskrevet i afsnit 9.3, punkt 1 og 4, anses facadesystemet og dermed den udvendige overflade som værende tilfredsstillende uanset industrielagerklasse.

Der stilles normalt ikke krav til reaktion på brandegenskaberne for døre, vinduesrammer og karme. En undtagelse herfra er, hvor det er foreskrevet, at dør, vinduesramme og karm skal bestå af produkter, der mindst er materiale klasse A2-s1,d0 [ubrændbart materiale].

Af bygningsreglement 2015, kap. 5.5.2, stk. 5, fremgår endvidere, at for lagerbygninger, hvor stablingshøjden er over 8 m samt lagerbygninger med større brandbelastning, skal der ved sikring mod brand- og røgspredning i bygningen samt brandspredning til andre bygninger tages hensyn til bygningens anvendelse og indretning.

Det vil derfor være hensigtsmæssigt, at ydervægge i bygningsafsnit i ILK 5 udføres som mindst bygningsdel klasse (R)EI 60 A2-s1,d0 [BS-bygningsdel 60]. Døre, porte, vinduer og lignende, der tilsammen maksimalt udgør 20 % af ydervæggens areal, kan dog udføres uden brandmodstandsevne. Ydervæggene kan også udføres uden brandmodstands-
evne for bygningsafsnit der er mindre end 600 m² eller bygningsafsnit med automatisk sprinkling der er mindre end 2.000 m². Dette gælder ikke, hvor afstanden til en anden bygning gør, at ydervæggen indgår i den brandmæssige opdeling.

Tagdækninger

Brandspredning kan også ske via bygningens tagdækning. For at modvirke dette, er det vigtigt, at tagdækningen er brandmæssigt egnet. Normalt kan der anvendes tagdækning, som er mindst tagdækning klasse B₉₀⁰⁰₀(t2) [klasse T tagdækning].

Ovenlys kan også medføre en risiko for brandspredning. Anvendes der ovenlys af materialer, som ikke mindst er materiale klasse A2-s1,d0 [ubrændbart materiale], er det derfor relevant at vurdere placeringen og omfanget af ovenlysene.

Brandmæssig opdeling af rum, bygningsafsnit og brandmæssige enheder

Ifølge bygningsreglement 2015, kap. 5.5.1 - 5.5.3, skal brandadskillende bygningsdele sikre mod uacceptabel brandspredning fra den brandmæssige enhed, hvor branden opstår.

Af bygningsreglement 2015, kap. 5.5.2, stk. 5, fremgår det endvidere, at for lagerbygninger, hvor stablingshøjden er over 8 m samt lagerbygninger med større brandbelastning, skal der ved sikring mod brand- og røgspredning i bygningen samt brandspredning til andre bygninger tages hensyn til bygningens anvendelse og indretning.

Formålet med de brandadskillende bygningsdele er foruden at sikre flugtvejene også at begrænse brandspredningen.

Såfremt de brandadskillende bygningsdele ikke er udført korrekt, vil branden ofte få et væsentligt større omfang, end det var forventet, hvis branden kan trænge forbi den brandadskillende bygningsdel. Det er derfor vigtigt, at de brandadskillende bygningsdele er korrekt udført.

Bygninger på samme grund kan betragtes som én bygning med hensyn til opdeling i brandmæssige enheder, så som brandceller og brandsektioner, når afstanden mellem bygningerne er mindre end summen af de afstande, som de enkelte bygninger skulle have til naboskel.
Eksempler på afstand til skel, vej- eller stimidte fremgår af tabel 9.12 i afsnit 9.5.3. Anvendelsen af dette princip for bygningsafsnit i ILK 1 - 4 samt bygningsafsnit i ILK 5, der er mindre end 600 m², er vist på figur 9.10.

Figur 9.10. Afstanden mellem bygningsafsnit i ILK 1 - 4 samt bygningsafsnit i ILK 5, der er mindre end 600 m²
Den særlige brandrisiko i bygningsafsnit i industri- og lagerbygninger i ILK 5, der er større end 600 m², betyder, at afstanden til naboskel normalt bør svare mindst til bygningens højde, som det fremgår af tabel 9.12. Dermed vil der, som det er vist på figur 9.11, være behov for en afstand på 23 m mellem en 18 m høj bygning med bygningsafsnit i ILK 5 og en bygning i anvendelseskategori 2 med en udvendig overflade, som er udført som $K_1 10 D-s2, d2$.

Hvor der sikres mod brandspredning mellem to bygningsafsnit i ILK 1 - 5 på samme grund, vil det være tilstrækkeligt for alle bygninger i ILK 5, hvis der anvendes en afstand på 10 m uanset bygningens højde. Således kan to bygninger i ILK 5 altid betragtes som værende to forskellige brandmæssige enheder, såfremt afstanden mellem bygningerne er mindst 20 m, som det er vist på figur 9.11.

Afstanden mellem bygninger på egen grund kan tillige bestemmes på baggrunden af en brandteknisk dimensionering, som det er beskrevet i Information om brandteknisk dimensionering.

Figur 9.11. Eksempler på afstande mellem bygningsafsnit der er brandmæssigt uafhængige, hvor mindst et bygningsafsnit er i ILK 5

Bygningsafsnit i industri- og lagerbygninger i ILK 5 udgør en særlig brandrisiko, hvor særlige forhold gør sig gældende. Bygningsafsnit i ILK 5, der er større end 600 m², bør derfor ikke sammenbygges med bygninger, der omfatter bygningsafsnit i anvendelseskategori 4 - 6, med mindre
der foretages særlige foranstaltninger, der tilgodeser sikkerheden for begge bygningsafsnit. Her gøres særligt opmærksom på, at der bør tages højde for forskellige muligheder for evakuering, redning og sikring mod brandspredning for begge bygningsafsnit.

Brandeeller

Ifølge bygningsreglement 2015, kap. 5.5.2, stk. 2, skal en bygning opdeles, så områder med forskellig personrisiko og/eller brandrisiko udgør selvstændige brandmæssige enheder.

Der bør i den forbindelse tages hensyn til såvel antændelsesmuligheder som brandbelastning. Derfor kan det anbefales, at enhver enhed i et bygningsafsnit som minimum udgør en selvstændig brandcelle, og at den enkelte brandcelle indrettes på en sådan måde, at det er let at orientere sig om udgangene til flugtvejene.

I bygningsafsnit i ILK 1 - 4 samt bygningsafsnit i ILK 5, der er mindre end 600 m², kan rum med tilknyttede funktioner placeres i bygningsafsnittet, hvis anvendelsen af rummet kan indplaceres i anvendelseskategorier 1, og eksemplerne i dette afsnit følges.

Eksempler på enheder, som bør udføres som selvstændige brandceller i bygningsafsnit i industri- og lagerbygninger i ILK 1 – 4 samt bygningsafsnit i ILK 5, der er mindre en 600 m², er:

- gang, der er flugtvej
- kontorlokale
- et eller flere kontorlokaler der er mindre end 150 m², hvis alle lokaler har direkte adgang til flugtvej
- værksted
- produktionsrum
- lagerrum
- depotrum
- kantine til mindre end 50 personer
- udstillingslokale, møderum til mindre end 50 personer
- garage
- teknikrum, ventilationsrum og større eltavlerum.

For øvrigt bygningsafsnit i ILK 5 kan kontorlokaler på indtil 150 m² samt teknikrum, der betjener bygningsafsnittet, etableres i samme bygningsafsnit. Disse mindre rum bør udføres som selvstændige brandceller.
De bygningsdele, som afgrænser en brandcelle, vil som regel yde den fornødne brandmodstandsevne, hvis de f.eks. udføres som bygningsdel klasse EI 60 [BD-bygningsdel 60]. Mod uudnyttelige tagrum, som ikke kan eller må udnyttes, og som har en begrænset brandbelastning, kan den fornødne brandmodstandsevne opnås ved, at de adskillende væg- og loftkonstruktioner udføres som bygningsdel klasse EI 30 [BD-bygningsdel 30].

Uanset anvendelsen af bygningsafsnittet kan der altid etableres toiletrum og lignende uden yderligere brandmæssig adskillelse.

Brandsektioner

Som det fremgår af bygningsreglement 2015, kap. 5.5, stk. 1, skal en bygning opdeles, så områder med forskellig personrisiko og/eller brandrisiko udgør selvstændige brandmæssige enheder.

Der bør i den forbindelse tages hensyn til redningsberedskabets indsatsmulighed, antændelsesmuligheder og til brandbelastning.

Af bygningsreglement 2015, kap. 5.5.2, stk. 4, fremgår endvidere, at for lagerbygninger, hvor stablingshøjden er over 8 m samt lagerbygninger med større brandbelastning, skal der ved sikring mod brand- og røgspredning i bygningen samt brandspredning til andre bygninger tages hensyn til bygningens anvendelse og indretning.

Industri- og lagerklasserne adskiller sig ved forskellige brandbelastninger. Derfor bør bygningsafsnit i forskellige industri- og lagerklasser ligeledes opdeles i selvstændige brandsektioner, med mindre der er foretaget særskilte tiltag til at forhindre brand- og røgspredning. Hvis et bygningsafsnit indeholder forskellige industri- og lagerklasser, bør der brandsikres, svarende til den største forekommende brandbelastning.

Bygningsafsnit i ILK 5, der er større end 600 m², har en særlig stor brandrisiko. Derfor bør brandsektioner i denne klasse alene være indrettet til lagerformål, og dermed bør tilknyttede funktioner være placeret i anden brandsektion. Dog kan mindre kontorlokaler og teknikrum, der betjener brandsektionen, indrettes som brandceller i selve brandsektionen, som det er beskrevet for brandceller i afsnittet ovenfor. Det vil ligeledes være muligt at etablere pakkeafsnit, ladestationer for truck mv. i lagerrummet, når der er foretaget særlig sikring mod, at der opstår en brand, som det er beskrevet i afsnit 9.5.4.
For mindre områder med gode evakueringsmuligheder, som kan være kendtegnet ved gode oversigtsforhold og kort afstand til en udgang, kan der indrettes mindre områder, hvor der er indrettet enkelte arbejdspladser relateret til lagerets funktion og anvendelse som eksempelvis overvågning af lageret eller pakkeafsnit. Hvor der etableres arbejdsmråder i bygningsafsnit i ILK 5, bør der tillige etableres et friareal rundt om afsnittet. Dette er nærmere beskrevet i afsnit 9.5.4.

For at kunne begrænse en brand til den brandmæssige enhed, hvor branden er opstået, kan det anbefales, at bygninger og bygningsafsnit opdeles i brandsektioner, jf. bygningsreglement 2015, kap. 5.5.2, stk. 2.

I tabel 9.9 er der anført en række eksempler på størrelser af brandsektioner, og i tabel 9.10 er der givet eksempler på brandmodstandsevne af brandsektionsadskillelser. Hvor brandmæssige enheder, der er større end 600 m², i ILK 5 sammenbygges med brandmæssige enheder i andre industri- og lagerklasser, bør adskillelsen altid udføres som en brandsektionsadskillelse ved en brandsektion i ILK 5.

Tabel 9.9: Eksempler på etageareal af brandsektioner

<table>
<thead>
<tr>
<th>INDUSTRI- OG LAGERKLASSE</th>
<th>UDEN AUTOMATISK SPRINKLERANLÆG</th>
<th>MED AUTOMATISK SPRINKLERANLÆG</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILK 1</td>
<td>Ingen grænse</td>
<td>Ingen grænse</td>
</tr>
<tr>
<td>ILK 2</td>
<td>5.000 m²</td>
<td>10.000 m²</td>
</tr>
<tr>
<td>ILK 3</td>
<td>2.000 m²</td>
<td>10.000 m²</td>
</tr>
<tr>
<td>ILK 4 samt bygningsafsnit i ILK 5 mindre end 600 m²</td>
<td>2.000 m²</td>
<td>10.000 m²</td>
</tr>
<tr>
<td>ILK 5</td>
<td>600 m²</td>
<td>10.000 m² (a)</td>
</tr>
</tbody>
</table>

(a) Hvor der i frost- og kølelager anvendes ydervægge som beskrevet i afsnit 9.3.1, punkt 4, bør brandsektionerne ikke være over 2.000 m².

Tabel 9.10. Brandmodstandsevne af brandsektionsadskillelser

<table>
<thead>
<tr>
<th>INDUSTRI- OG LAGERKLASSE</th>
<th>BRANDMODSTANDSEVNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILK 1</td>
<td>Bygningsdel klasse EI 60 [BD-bygningsdel 60]</td>
</tr>
<tr>
<td>ILK 2</td>
<td>Bygningsdel klasse EI 60 A2-s1,d0 [BS-bygningsdel 60]</td>
</tr>
<tr>
<td>ILK 3</td>
<td>Bygningsdel klasse EI 60 A2-s1,d0 [BS-bygningsdel 60]</td>
</tr>
<tr>
<td>ILK 4</td>
<td>Bygningsdel klasse EI 60 – (M) A2-s1,d0 [Tung BS-bygningsdel 60]</td>
</tr>
<tr>
<td>ILK 5</td>
<td>Bygningsdel klasse EI 120 – M A2-s1,d0 [Tung BS-bygningsdel 120]</td>
</tr>
</tbody>
</table>
For brandsektionsadskillelser i bygninger, hvor stablingshøjden er mere end 8 m, eller som har en større brandbelastning, bør der ifølge bygningsreglement 2015, kap. 5.5.2, stk. 5, være særlig opmærksomhed på f.eks. reoler, som kan vælte under brand og give anledning til en vandret belastning på brandsektionsvægge. Hvor dette er tilfældet, bør brandsektionsvægge i ILK 4 og 5 udføre at sikre en brandadskillende funktion tillige kunne modstå en vandret mekanisk påvirkning (M).

Der skal her gøres opmærksom på, at det ikke nødvendigvis er alle brandsektionsvægge i ILK 4, hvorom det gælder, at der kan forekomme en vandret last. Der bør eksempelvis ikke forventes en vandret last på brandsektionsadskillerne i industri- og lagerbygninger, hvor der op lagres på paller i et lag direkte på gulv.

Gennembrydninger og lign. i brandadskillende bygningsdele

Ifølge bygningsreglement 2015, kap. 5.5.2, stk. 4, skal brandadskillende bygningsdele lukkes tæt ved samlinger, og gennemføringer til f.eks. kabler, rør og ventilationskanaler skal udføres, så adskillerernes brandmæssige egenskaber ikke forringes.

For at nedsætte risikoen for brandspredning i en bygning anbefales det at udføre bygningsdelene, så en brand ikke kan sprede sig fra en brand celle eller brandsektion til et hulrum, som passerer flere brandadskillende bygningsdele. Dette omfatter også brandadskillende bygningsdele, som sammenbygges med ydervægge.

Ved indbygning af bygningsdele, skorstene, ventilationskanaler, slange skabe, rør, kabler og lignende i en brandsektionsadskillelse er det vigtigt, at der tages hensyn til, at adskillerens brandmodstandsevne eller stabilitet ikke forringes.

Åbninger i brandsektionsadskillende bygningsdele kan som udgangspunkt lukkes med dør klasse EI: 60-C [BD-dør 60], dog EI: 60-C A2-s1,d0 [BS-dør 60] for bygningsafsnit i ILK 5. For så vidt angår døre til og i flugtveje, henvises der i øvrigt til afsnit 2.

Hvor der er behov for, at døre, lemme eller porte står åbne ved almindelig brug af bygningen eksempelvis ved transportåbninger, bør disse udføres med et automatisk dør lukningsanlæg, som lukker døren i tilfælde af brand. På tilsvarende vis bør det sikres, at transportbånd, der fører varer gennem åbningen, stoppes ved brand, så varerne og transportbåndet ikke kan forhindre lemme eller porte i at lukke i tilfælde af brand.
Transportbånd bør udføres med nødafbryder ved gennemføringerne for ligeledes at kunne stoppe varetransport gennem transportåbninger manuelt.

Mindre åbninger som f.eks. vinduer, døre, porte og lemme i brandcelleadskillende bygningsdele kan ofte udføres med en brandmodstandsevne, som tidsmæssigt svarer til halvdelen af den brandadskillende bygningsdels brandmodstandsevne. Hvis døre i brandcelleadskillende bygningsdele udføres med en selvlukkende funktion, vil der være større sikkerhed for, at dørene er lukket i tilfælde af brand. Døre, der naturligt vil være lukket under en brand, kan dog udføres uden selvlukkende funktion.

Brandsektionsvægges stabilitet under brand
Der henvises til afsnit 5.2.8.

Brandkam og brandkamserstatning (brandsektion)
For at reducere risikoen for horisontal brandspredning over tag fra én brandsektion til en anden, jf. bygningsreglement 2015, kap. 5.5, stk. 1, kan brandsektionsvægge føres op over taget med en forsvarligt afdækket brandkam af samme konstruktion som den underliggende væg. Af hensyn til murede brandkammes holdbarhed er det mest hensigtsmæssigt, at de udføres med vandrette skifter.

Som alternativ til en brandkam kan bygningen udføres med en brandkamserstatning, som er en sikring af tagkonstruktionen langs brandsektionsvæggen, der understøttes forsvarligt og fastgøres til væggen eller nærmeste spær.

Brandkamserstatningen udføres som mindst bygningsdel EI 60 [BD-bygningsdel 60] for bygningsafsnit i ILK 1 - 4 samt for bygningsafsnit i ILK 5, der er mindre end 600 m². For øvrige bygningsafsnit i ILK 5 udføres brandkamserstatningen som mindst bygningsdel EI 120 [BD-bygningsdel 120]. Hvor brandkamserstatningen udføres som en bærende bygningsdel, er det tilstrækkeligt, at den udføres på den ene side af brandsektionsvæggen eller ind over brandsektionsvæggen. Brandkamserstatningen kan også udføres som en ikke bærende bygningsdel. I så fald udføres den på begge sider af og i tæt forbindelse med brandsektionsvæggen. Principippet er nærmere vist på figur 5.7 for en brandkamserstatning, der har en bredde på 1 m.
Brandkamme eller brandkamserstatninger kan udføres på følgende vis:

Brandkam eller brandkamserstatning på bygninger, hvor taget har en hældning på mindre end 1:8 mod brandsektionsvæg kan udføres på følgende vis:

- For brandsektioner i ILK 1 - 4 samt bygningsafsnit i ILK 5 på mindre end 600 m², hvor tagkonstruktionen ikke indeholder materialer, som er ringere end materiale klasse B-s1,d0 [klasse A materiale] bortset fra tagdækninger samt lægter og spær, kan brandkam eller brandkamserstatning udelades, såfremt brandsektionsvæggen føres op til undersiden af den yderste tagdækning.
- For andre bygningsafsnit i ILK 1 - 4 samt bygningsafsnit ILK 5, der er mindre end 600 m², etableres en brandkam med en højde på 0,3 m over tagfladen. Alternativt udføres en brandkamserstatning, som mindst er (R)EI 60 [BD-bygningsdel 60] på 1 m langs brandsektionsvæggen.
- For andre bygningsafsnit i ILK 5 etableres en brandkam med en højde på 0,5 m, som det er vist på figur 9.12, og med en afstand mellem åbninger i taget på hver side af brandsektionen på mindst 5 m.

![Figur 9.12. Udformning af brandkam for bygningsafsnit i ILK 5](image)

Alternativt etableres en brandkamserstatning på 5 m udført som mindst bygningsdel (R)EI 120 [BD-bygningsdel 120], som det er vist på figur 9.13.
Brandkam eller brandkamserstatning på bygninger, hvor taget har en hældning større end 1:8 mod brandsektionsvæg, kan udføres på følgende vis:

- For alle brandsektioner i ILK 1 - 5 etableres en brandkam så høj, at der opnås en vandret afstand på 2,5 m mellem toppen af brandkammen og tagfladen. Alternativt etableres en brandkamserstatning, der er så bred, at der opnås en vandret afstand på 2,5 m fra brandkamserstatningens øverste punkt til brandsektionsvæggen på begge sider af væggen. For brandsektioner i ILK 1 - 4 samt bygningsafsnit i ILK 5, der er mindre end 600 m², kan brandkamserstatningen være ikke-bærende. Principperne for disse bygninger fremgår af figur 9.14. Principippet er det samme for øvrige bygningsafsnit i ILK 5, dog udføres brandkamserstatningen her som mindst bygningsdel REI 120 [BD-bygningsdel 120]. I dette tilfælde bør brandkamserstatningen være bærende.
Figur 9.14. Eksempel på udformning af brandkam, når taget har en hældning på mere end 1:8 for brandsektioner i ILK 1-4 og bygningsafsnit i ILK 5, der er mindre end 600 m²
Eksempelsamling om brandsikring af byggeri

Bygninger hvor der ved brandsektionsadskillelsen er forskellig bygningshøjde

- Brandsektionsvæggen føres op til tag på den højere bygning og udføres uden åbninger i hele væggens højde. Alternativt etableres en bærende brandkamserstatning uden åbninger i en afstand af 5 m fra brandsektionsvæggen. Se figur 9.15. Hvor højdeforskellen mellem bygningerne er mindre end højden af en brandkam, anses bygningerne for at være lige høje, og brandsikringen af sammenbygning mellem tag og brandsektionsvæg udføres, som om bygningerne var lige høje, idet højden af brandkammen udføres i forhold til den højeste bygning.

![Figur 9.15. Eksempler på sikring af brandsektionsvægge for bygninger med forskellige bygningshøjder i for bygningsafsnit i ILK 1 - 4 og bygningsafsnit i ILK 5, der er mindre end 600 m²](image)

For at være sikker på, at der ikke kan ske en brandspredning forbi brandsektionsadskillelsen, er det vigtigt for tagkonstruktioner, der indeholder brændbare byggematerialer, at brandsektionsvæggen føres ubrudt igennem tagkonstruktionen og videre op i tæt forbindelse med undersiden af tagdækningen (den yderste tagdækning). Dermed kan eksempelvis undertage, dampspærre eller andre brændbare byggematerialer ikke føres over eller igennem brandsektionsadskillende vægge.

For bygningsafsnit i ILK 5, der er større end 600 m², bør brandkamserstatninger udføres med isoleringsmaterialer, som er mindst materiale klasse A2-s1,d0 [ubrændbart materiale].
Når det bestemmes, hvor brandkamserstatninger placeres i taget, er det væsentligt, at dette sker ud fra en samlet vurdering af mulig brandspredning forbi en brandsektionsadskillelse. Er der tillige mulighed for vandret brandspredning ved eksempelvis vinkelsmitte, bør sikringen mod vinkelsmitte og brandkamserstatning så vidt muligt placeres over hænden, som det er vist på figur 9.15.

Vandret brandspredning

Som det fremgår af bygningsreglement 2015, kap. 5.5, stk. 1, må en brand ikke sprede sig til andre brandmæssige enheder i den tid, der er nødvendig for evakuering. Det er derfor vigtigt at være opmærksom på, at en brand også kan sprede sig vandret rundt om de brandadskillende vægge, f.eks. via ydervæggen, tagudhæng og lignende.

Det er derfor vigtigt, at brandadskillende vægge føres ud til indersiden af den udvendige beklædning, og at tagudhæng mv., som passerer en brandadskillende væg, afbrydes eller på anden måde sikres ud for væggen.

Brandspredning via ydervæggen kan for bygninger i ILK 1 - 4 samt bygningsafsnit i ILK 5, der er mindre end 600 m², begrænse ved brandadskillerne, så brandadskillerne ved en ydervæg af materiale klasse A2-s1,d0 [ubrændbart materiale] sammenbygges med denne. Ved ydervægge af materialer, som ikke mindst er materiale klasse A2-s1,d0 [ubrændbart materiale], kan det anbefales, at adskillelsen føres frem til indersiden af den udvendige beklædning, se tillige figur 9.16.

![Figur 9.16. Eksempler på sammenbygning mellem ydervæg og brandsektionsvæg for bygninger i ILK 1 – 4 samt bygningsafsnit i ILK 5, der er mindre end 600 m²](image-url)
Bygninger i ILK 5 udgør en særlig brandfare. I forbindelse med sammenbygning med facaden bør der derfor for større brandsektioner (større end 2.000 m²) foretages en særlig sikring mod brandsmitte ved sammenbygning mellem ydervæg og brandsektionsvæg. Dette kan ske ved at udføre ydervæggen som mindst bygningsdel (R)EI 60 A2-s1,d0 [BS-bygningsdel 60] uden åbninger på en strækning på 5 m ved brandsektionsvæggen. Denne sikring mod brandsmitte bør sammenbygges med brandsektionsvæggen, men kan placeres frit i øvrigt. Det kan accepteres, at der placeres gående døre i sikringen, såfremt disse udføres som mindst dør klasse EI 60-C A2-s1,d0 [BS-dør 60].

Alternativt kan den sektionsafgrænsende væg videreføres gennem ydervæggen til en afstand af 0,5 m fra bygningens udvendige side. Se tillige figur 9.17.

Figur 9.17. Eksempler på sammenbygning mellem ydervæg og brandsektionsvæg for større brandsektioner i ILK 5

Hvis der ved brandsektionsafgrænsende vægge er mulighed for vinkelsmitte, er det normalt nødvendigt at udføre ydervæggene uden åbninger som bygningsdel klasse EI 60 [BD-bygningsdel 60] for bygningsafsnit i ILK 1 - 4 samt for bygningsafsnit mindre end 600 m² i ILK 5 og EI 60 A2-s1,d0 [BS-bygningsdel 60] for øvrige bygningsafsnit i ILK 5. Der sikres mod vinkelsmitte inden for en afstand fra sektionsafgrænsningen på henholdsvis 2,5 m for brandsektioner i ILK 1 - 4 og bygningsafsnit i ILK 5 på mindre end 600 m² og 5 m for øvrige bygningsafsnit i ILK 5.
Mulighed for vinkelsmitte kan normalt anses for at være til stede, hvor vinklen mellem ydervæggene er mindre end 135°. De angivne afstande kan måles enten langs en af facadelinjerne eller på skrå over hjørnet. På figur 9.18 er der vist eksempler på hvorledes, der kan sikres for vinkelsmitte. På figuren er angivet en afstand ”a”. Hvor bygningsafsnittet er i ILK 1 - 4 samt bygningsafsnit i ILK 5, som er mindre end 600 m², sættes ”a” til 2,5 m, og for øvrige bygningsafsnit i ILK 5 bør afstanden være mindst 5 m.

![Figur 9.18. Eksempel på sikring mod vinkelsmitte](image)

9.5.3 Brandspredning til bygninger på anden grund

Ifølge bygningsreglement 2015, kap. 5.5.3, stk. 1, skal bygninger placeres i en sådan afstand fra naboskel, vej- eller stimidte eller udføres på en sådan måde, at det sikres, at der ikke sker en brandspredning til bygninger på anden grund. For lagerbygninger, hvor stablingshøjden er over 8 m samt lagerbygninger med en større brandbelastning, skal der ifølge bygningsreglement 2015, kap. 5.5.3, stk. 2, ved sikring mod brandspredning til nabogrund tages hensyn til bygningens udformning og anvendelse.

Tabel 9.11. Eksempler på afstande til naboskel, vej- eller stimidte ved forskellige industri- og lagerklasser afhængig af den udvendige beklædning

<table>
<thead>
<tr>
<th>INDUSTRI- OG LAGERKLASSE</th>
<th>UDVENDIG OVERFLADE</th>
<th>UDVENDIG BEKLÆDNING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MINDEST SOM KLASSE D-S2, D2</td>
<td>MINDEST SOM MINDEST BEKLÆDNINGSKLASSE K, 10 B-s1, d0</td>
</tr>
<tr>
<td>ILK1</td>
<td>5 m</td>
<td>2,5 m</td>
</tr>
<tr>
<td>ILK2</td>
<td>5 m</td>
<td>2,5 m</td>
</tr>
<tr>
<td>ILK3</td>
<td>5 m</td>
<td>2,5 m</td>
</tr>
<tr>
<td>ILK4 samt bygningsafsnit i ILK 5, der er mindre end 600 m²</td>
<td>5 m</td>
<td>2,5 m</td>
</tr>
<tr>
<td>ILK5</td>
<td>-</td>
<td>Bygningens højde dogmindst 10 m.</td>
</tr>
</tbody>
</table>

a) Hvor der anvendes ydervægge, som det er beskrevet i afsnit 9.3.1, pkt. 4, kan afstand til skel sidestilles med en udvendig beklædning svarende til K,10 B-s1, d0.

Hvis en bygning med bygningsafsnit i ILK 1 - 4 samt bygningsafsnit i ILK 5, der er mindre end 600 m² opføres tættere på naboskel, vej- eller stimidte end 2,5 m, vil det normalt være nødvendigt, at den udføres med brandvæg mod naboskel, vej eller sti for derved at sikre, at der ikke sker brandspredning til anden grund. En brandvæg kan f.eks. udføres som bygningssdel klasse REI 120 A2-s1, d0 [BS-bygningssdel 120], se figur 9.19.

Hvis bygningsafsnittet, som støder op mod skel, er i ILK 4 eller bygningsafsnittet er i ILK 5, og er større end 600 m², bør væggen tillige udføres, så den kan modstå en vandret mekanisk last. Brandvæggen bør i så fald udføres som bygningssdel klasse REI 120-M A2-s1,d0 [Tung BS-bygningssdel 120].
Figur 9.19. Eksempel på udformning af brandvæg i forbindelse med skel for bygningsafsnit i ILK 1-4 og brandsektioner i ILK 5, der er mindre end 600 m²

For så vidt angår sikring mod brandsmitte ved brandvæg henvises der til afsnit 5.3.2 og 5.3.3.

Bygningsdele og installationer bør ikke indbygges i eller gennembryde en brandvæg, uden at der tages højde for, at væggens brandmodstands­evne og stabilitet ikke forringes.

Da bygningsafsnit i ILK 5, der er større end 600 m², indebærer en særlig brandfare, bør afstanden til vej- eller stiskel altid være mindst 5 m, dog aldrig mindre end bygningens højde til vej- og stimidte. Af samme årsag bør sikring mod brandspredning til anden grund altid ske ved, at bygningen placeres i god afstand fra naboskel. Løsningen med brandvæg kan derfor ikke anvendes her.

På figur 9.20 er vist et eksempel med placering af en bygning med bygningsafsnit i ILK 5, der er større end 600 m², og hvor bygningen har en højde på 18 m. I dette tilfælde placeres bygningen mindst 5 m fra vejskel og mindst 18 m fra vejmidte.

Figur 9.20. Eksempel på mindste afstande til vejskel og vejmidte for bygningsafsnit i ILK 5, som er større end 600 m²
9.5.4 Sikring mod en brands opståen

Ifølge bygningsreglement 2015, kap. 5.5.2, stk. 2, skal en bygning opdeles, så områder med forskellig personrisiko og/eller brandrisiko udgør selvstændige brandmæssige enheder. For lagerbygninger, hvor stablingshøjden er over 8 m samt lagerbygninger med en større brandbelastning, skal der ifølge bygningsreglement 2015, kap. 5.5.2, stk. 5, ved sikring mod brand- og røgspredning tages hensyn til bygningens anvendelse og udformning.

Der bør i den forbindelse tages hensyn til såvel antændelsesmuligheder, den forventede brandudvikling og brandbelastningen.

Der kan være forskellige årsager til, at der opstår en brand i en bygning, f.eks. kan det ske på grund af uhensigtsmæssig brug af bygningen eller placeringen af de tekniske installationer. For bygningsafsnit i ILK 1 - 4 samt bygningsafsnit ILK 5, der er mindre end 600 m\(^2\), kan sikring mod en brands opståen for tekniske installationer opfyldes ved at følge de generelle bestemmelser i bygningsreglementet 2015 samt tilhørende regler.

For bygninger med bygningsafsnit i ILK 4 og 5 bør efterfølgende forhold i øvrigt tilgodeses, jf. bygningsreglement 2015, kap. 5.5.2, stk. 5, samt kap. 8.1, stk. 2, for at sikre, at risikoen for, at en brand opstår og spreder sig, begrænses.

Pakkeafsnit i bygningsafsnit i lagerbygninger i ILK 5, der er større end 600 m\(^2\)

For at sikre, at risikoen for, at der opstår en brand i et pakkeafsnit, begrænser, bør der ikke indgå arbejdsprocesser, som involverer brug af åben ild eller anvendelse af krympfolie og lignende. Det enkelte pakkeafsnit bør ikke være større end 200 m\(^2\), og det samlede areal af et pakkeafsnit i en brandsektion bør ikke overstige 600 m\(^2\). For at mindske risikoen for brandspredning bør der udlægges et friområde rundt om pakkeafsnittet med en bredde på 4 m, og der bør ikke være oplag over pakkeafsnittet, som det er vist på figur 9.21.
Figur 9.21. Udformning af pakkeafsnit i bygningsafsnit i lagerbygninger i ILK 5

Arbejdssteder i bygningsafsnit i lagerbygninger i ILK 5, der er større end 600 m²

Der kan etableres enkelte arbejdssteder i bygningsafsnit i ILK 5, der er større end 600 m². Der bør dog altid etableres et friareal på mindst 1,5 m rundt om arbejdsstedet. Arbejdssteder må ikke involvere brug af åben ild, varmt arbejde eller tilsvarende, der kan give anledning til, at en brand kan opstå.

Hvor der etableres egentlige kontorer på indtil 150 m² med flere arbejdssteder, bør disse altid etableres i egne brandceller, og der bør etableres et friareal med en bredde på mindst 4 m rundt om brandcellen, som det er vist på figur 9.22.

Figur 9.22. Friarealer ved kontorafsnit der er mindre end 150 m²
Opvarmning og køling af bygningsafsnit i ILK 5, der er større end 600 m²

En uhensigtsmæssig opvarmning og køling af en bygning kan give anledning til, at der opstår en brand. Der bør derfor være særlig opmærksomhed på udformningen af varme- og køleanlæg.

Opvarmning bør derfor ske med:

- Varmt vand eller lavtryksdamp fra fyr, der er anbragt udenfor brandsektionen
- Varm luft fra et ventilationsanlæg.

Køling bør ske ved brug af elektriske køleaggregater eller ved indblæsning af kold luft.

Der kan anvendes brandfarlige væsker eller gasser i form af indirekte køling, når disse væsker eller gasser er placeret i det fri eller i egne brandsektioner. Der henvises til, at der kan være supplerende bestemmelser som følge af beredskabsloven relateret til oplag og brug af brandfarlige væsker og gasser.

Ventilationsanlæg i bygningsafsnit i ILK 5, der er større end 600 m²

Ventilationsanlæg bør udformes, så risikoen for, at en brand opstår og spreder sig, er lille.

Ventilationsanlæg bør placeres i det fri eller i en selvstændig brandcelle, der alene anvendes til ventilation og tilknyttede installationer. Hvor anlægget betjener flere brandsektioner, bør det placeres i egen brandsektion.

I tillæg til DS 428 Norm for brandtekniske foranstaltninger ved ventilationsanlæg, bør følgende være opfyldt:

- Ventilationsanlæg i lagerbygninger i ILK 5 bør altid udføres med kanaler udført af mindst materiale klasse A2 s1,d0 [ubrændbart materiale] med et smeltepunkt på mindst 850 °C.

- Hvor ventilationsanlæg betjener flere brandsektioner, bør der være særlig opmærksomhed på tætningen i adskillelsen mellem sektionerne, idet brandsektionsadskillelser i ILK 5 normalt udføres som bygningsdel klasse EI 120-M A2 s1,d0 [BS-bygningsdel 120]. Dette kan medføre, at der bør foretages supplerende tætning af gennemføringerne. Spjæld i adskillelsen kan dog udføres med en brandmodstandsevne på 60 minutter.
• Hvor kanalsystemer betjener flere brandsektioner, bør uisolerede kanaler monteres med en afstand på mindst 100 mm til materialer, der er ringere end materiale klasse B-s1,d0 [klasse A materiale], med undtagelse af loftsforskalling, gulvbrædder, fodlister og underlag for tagdækning.

• Luftindtag bør placeres i sikker afstand fra ildsteder, skorstensudmundinger, renselemmer, eksplosionsaflastninger mv. En afstand på mindst 3 m vil være passende.

• Ved placering af luftindtag bør det sikres, at der ikke kan komme eksplosionsfarlige gasser og dampe ind i anlægget.

• Der bør ikke anvendes røgventilerede anlæg.

El-installationer i bygningsafsnit i ILK 5, der er større end 600 m²

Større el-tavler bør som udgangspunkt placeres i selvstændige teknikrum.

El-tavler kan dog placeres i lagerbygninger, såfremt tavlerne monteres på vægge på et underlag af mindst beklædning klasse K₁ 10 B-s1,d0 [klasse 1 beklædning] i en afstand af 1 m fra tavlen. Foran el-tavlen bør der være et friareal på 1,5 m, og der bør ikke være oplag over el-tavlen. Se også figur 9.23.

![Figur 9.23. Eksempel på etablering af elafsnit](image)
Opladning af trucks i bygningsafsnit over 2000 m² i ILK 4 og i bygningsafsnit i ILK 5, som er større end 600 m²
Opladning af trucks bør som udgangspunkt ske udenfor bygningsafsnit i ILK 4, der er større end 2.000 m², og bygningsafsnit i ILK 5, der er større end 600 m². Hvor det kan sandsynliggøres, at en brand, der er opstået i en truck, ikke kan sprede sig til oplaget, kan opladning imidlertid tillades. Eksempelvis kan det tillades at have én ladestation i en brandsektion, såfremt der udlægges et friareal på 3 m rundt om ladestationen, og der ikke sker oplag over ladestationen og friarealet. Alternativt kan der foretages brandmæssig opdeling omkring ladestationen.

El-tracing i isolering, der er ringere end materiale klasse A2-s1,d0 [ubrændbart materiale]
Hvor der foretages el-tracing i isolering, der er ringere end materiale klasse A2-s1,d0 [Ubrændbart materiale] i bygninger i bygningsafsnit i ILK 5, bør det sikres, at isoleringen ikke kan antændes. Dette kan eksempelvis ske ved at inddække kabler mv. med ubrændbart materiale. På tilsvarende vis bør El-varme bændler til sikring af vandførende rør placeres i ubrændbare isoleringsmaterialer.

9.6 Redningsberedskabets indsatsmuligheder
Ifølge bygningsreglement 2015, kap. 5.6, stk. 1, skal bygninger placeres og udførmes på en sådan måde, at redningsberedskabet har mulighed for redning af personer og for at udføre slukningsarbejde.

Redningsberedskabet skal have mulighed for at komme ind i bygningen og afsøge denne for personer, der skal reddes ud af bygningen. I henhold til byggeloven er der ikke krav om, at redningsberedskabet foretager en indsat med hensyn til sikring af værdier.

9.6.1 Adgangs- og tilkørselsveje til bygningen
Ifølge bygningsreglement 2015, kap. 5.6.1, stk. 1 og 2, skal redningsberedskabets materiel kunne føres frem til enhver dør til terræn i det fri.

Uhindret adgang
Hvis redningsberedskabet skal have mulighed for uhindret at komme frem til bygningen, bør døre, spærrebonde, porte eller lignende, der er anbragt i adgangsvejen, kun forsynes med lås, hvis det er muligt for red-
Tilkørselsveje og brandredningsarealer
Der skal indrettes egne tilkørselsveje og udlægges tilstrækkelige brandredningsarealer, således at det er muligt at foretage en forsvarlig rednings- og slukningsindsats.

Tilkørselsveje og brandredningsarealer for redningsberedskabet skal fremstå tydelige og befæstes, så de kan holde til akseltrykket fra brand- og redningskøretøjerne.

En kørevej bør normalt være mindst 2,8 m bred. Af hensyn til redningsberedskabets muligheder for at fremføre slanger bør der ikke være mere end 20 m fra kørevejen til en udgang, der er flugtvej eller indsatsvej, og der bør ikke være mere end 10 m fra en kørevej til en tilkobling for et stigrør.

I forbindelse med udvendig indsats i højden for bygningsafsnit i ILK 5 der er større end 600 m² kan der være behov for at anvende en kørbare stige. Arealen skal være stort nok til, at redningsberedskabets kørbare stiger kan rejses.

Normalt vil det være tilstrækkeligt, at der er udlagt et 4 m bredt befæstet areal til brandredningskøretøjer til brug ved indsats i højden.

I bygninger, hvor redningsberedskabets slanger kun vanskeligt kan fremføres til alle steder i bygningen, er det nødvendigt på anden måde at sikre en hurtig og tilstrækkelig vandforsyning. Dette kan f.eks. ske ved, at der etableres stigrør. Der henvises til afsnit 6.3.1 for udførelse af stigrør.

Adgang til tagflader for bygningsafsnit i ILK 5, der er større end 600 m²
I forbindelse med slukning af en tagbrand, hvor redningsberedskabet ikke kan slukke branden fra deres kørbare stiger, bør der etableres anden mulighed for at slukke branden.

Hvor tagfladen er beliggende mere end 25 m over terræn, bør der etableres adgang til tagfladen. Hvis arealet af tagfladen er mindre end 1.000 m², bør der etableres mindst en adgang, der kan udføres som lejder. Er arealet
større end 1000 m², bør der etableres to faste adgange til tag, hvor den ene af de to faste adgange skal være en trappe fra terræn til tagfladen, mens den anden faste adgang kan være en lejder.

Adgangene bør placeres ved tagfladens modstående ender.

Figur 9.24. udformning af trappe til tagflade for bygningsafsnit i ILK 5, der er større end 600 m²

For udførelse og udformning af lejdere henvises til Arbejdstilsynets vejledning om tekniske hjælpemidler.

Stigrør

Stigrør kan bl.a. være relevante ved adgang til tagflader og i højlagre, hvor der er lange indtrængningsveje fra det fri, f.eks. pga. tilbygninger og lignende - altså efter samme koncept som ved trapperum. Det kan også være relevant ved anvendelse af indsatsgange (indtrængningsveje) under terræn.
I indtrængningsveje, hvor en indgang alene kan nås via andre rum (i anden brandsektion), kan slangeudlægningen ske gennem adgangsrummet. Ved lange adgangsveje kan det i nogle tilfælde være hensigtsmæssigt at have vandretliggende stigrør eller anden tilsvarende mulighed for vandforsyning. Fra stigrøret kan der iværksættes slangeudlægning i bygningen (adgangsrummet) uden for den brændende højlagersektion. Der skal være let adgang til stigrøret.

Indsatsveje i bygningen og indtrængningsveje

Indsatsveje/indtrængningsveje omfatter redningsberedskabets mulighed for at komme ind i bygningen.

På grund af de særlige risikoforhold for bygningsafsnit i ILK 5, der er større end 600 m², bør der i denne type bygninger til enhver brandsektion være mindst 2 uafhængige indtrængningsveje, der har indgangsdør direkte fra det fri, og som er placeret hensigtsmæssigt. To indtrængningsdøre er i denne henseende uafhængige, når de placeres i modstædende ender af det gangareal, der er udlagt i lageret, der giver adgang til udgange, som det er vist på figur 9.3.

For bygningsafsnit i ILK 1 – 4 og bygningsafsnit i ILK 5, der er mindre end 600 m², anses det normale flugtvejssystem som værende tilfredsstillende med hensyn til at sikre mulighed for adgang til bygningen for redningsberedskabet, se afsnit 9.2.

Indtrængningsveje i bygningsafsnit med frost- og kølelagre

I bygningsafsnit i frost- og kølelagre vil det ofte af temperaturmæssige årsager være nødvendigt at etablere hurtiggående porte i åbninger mellem frostlageret og øvrige bygningsområder. Såfremt der etableres hurtiggående porte, hvor der er en indtrængningsvej, bør det sikres, at der til enhver tid er passage for redningsberedskabet. Det vil sige, at der eksempelvis bør træffes foranstaltninger, så automatiske døre kan åbnes på trods af strømsvigt mv.

Alternativt kan der placeres en sidehængt dør til flugt- og indtrængning ved siden af porten, som vist på nedenstående figur 9.25.
Figur 9.25. Eksempel på sidehængt dør til flugt- og indtrængning ved siden af porten

Indtrængningsveje og friarealer i bygningsafsnit i ILK 5, der er større end 600 m²

For at kunne foretage en afsøgning og efterslutning bør der udlægges indtrængningsveje og friarealer, som bør være udformet med tilstrækkelig fribredde og –højde.

Friarealerne kan anvendes til at fremføre redningsberedskabets slukningsmateriel og samtidig opdele lageret i mindre enheder med henblik på at begrænse en eventuel brands udbredelse.

Foran og mellem indgangsdøre, der er nødvendige for redningsberedskabets indsat, bør der for bygningsafsnit i ILK 5 udlægges mindst 3 m brede friarealer til brug ved indtrængning. Disse områder må ikke udlægges gennem og under reolrækker samt under et indskudt dæk.

I forhold til de øvrige indtrængningsveje, der ikke er beskrevet, bør der inde i bygningsafsnit i ILK 5 ved indgangsdøre være mindst 60 cm friholdt areal på begge sider af døren. Dette er for at hindre, at der f.eks. anbringes reoler helt op ad døren, hvorved indtrængningsmulighederne forringes. Se nedenstående figur 9.26.
Figur 9.26. Friholdt areal ved døre

Indtrængningsveje, overdækning i bygningsafsnit i ILK 5, der er større end 600 m²

Med reolrækker menes der enkeltstående reoler med indbyrdes afstand, som det er vist i figur 9.27.

Kompaktreoler betragtes som blokstabling og ikke som reoler. Der kan ikke etableres overdækkede indtrængningsveje langs et kompaktreolfelt, f.eks. ved etablering af indtrængningsvej under udkragede kompaktreoler langs en væg.

Figur 9.27. Eksempel på etablering af indtrængningsvej under reoler langs en væg
Indtrængningsveje under reoler anses for tilstrækkelig sikre, når passa-
gerne har en fri højde på ca. 2,5 m og en fribredde på mindst 2 m, og når
der over gennemgangen i reoler er etableret en ubrændbar sikring mod
nedfald. Sikringen kan udformes som en ubrændbar, mekanisk holdbar
plade, f.eks. som en korrugeret metalplade. Ved oplag af større emner
can sikringen bestå af et gitterværk med en maskestørrelse, tråddimen-
sion og styrke, der er afpasset med det pågældende oplag. Hvor der er
risiko for brændende dråber, f.eks. ved oplag af plast, eller hvor der op-
lagres i plastbakker, bør sikringen være udført som en tæt plade.

Blokstabling i bygningsafsnit i ILK 5, der er større end 600 m²
I brandsektioner med blokstabling på gulv skal der udlægges mindst 3 m
brede friarealer mellem oplagsfelter således, at der ikke forekommer
uopdelte oplagsfelter over 400 m².

Ved dimensionering af et sprinkleranlæg skal der tages højde for byg-
ningens faktiske brug. Der kan være dimensioneringsregler for sprink-
leranlæg, som kan medføre, at bygninger indrettes anderledes, end det
er vist på figur 9.28.

![Figur 9.28. Eksempler på opdeling i felter på blokstabling](image-url)
Reolstabling i bygningsafsnit i ILK 5, der er større end 600 m²
I bygningsafsnit med oplag i reoler bør der udlægges mindst 3 m brede friarealer mellem hvert oplagsfelt således, at der ikke forekommer uopdelte oplagsfelter over 1.200 m².

Ved reolstabling forstås reoler, hvor der ikke findes oplag, som ikke er tilgængeligt fra et gangareal. Et eksempel herpå er en reol med en dybde på indtil 2 paller. Reoler med oplag, der ikke er tilgængeligt fra et gangareal som f.eks. en reol med 3 paller i dybden, vil betragtes som blokstabling ved fastlæggelse af det maksimale areal af oplagsfeltet.

Oplagshøjde i bygningsafsnit i ILK 5, der er større end 600 m²
I brandsektioner, hvor der er mulighed for stabling over den tilladte stablingshøjde, markeres oplagshøjden på vægge og søjler.

Det bør overfor de ansatte synliggøres, hvor højt der må stables i den pågældende brandsektion.
Afmærkningen skal medvirke til, at brandsikkerheden er i orden. Stables der for højt, er det en overtrædelse af tilladelsens vilkår, og bygningens brandsikkerhed kan dermed være utilstrækkelig. For høj stabling kan også medføre, at et sprinkleranlæg ikke kan fungere efter hensigten.

Belægningsplaner i bygningsafsnit i ILK 4, der er større end 2.000 m² og bygningsafsnit i ILK 5, der er større end 600 m²

Der bør udarbejdes belægningsplaner for lagerbygninger med bygningsafsnit i ILK 4, der er større end 2000m² og bygningsafsnit i ILK 5, der er større end 600 m². Belægningsplanerne bør entydigt illustrere den påtænkte indretning af bygningsafsnittet.

Belægningsplanen er en plantegning, som viser oplagsfelter (placering af alle reoler og blokstablingsarealer), alle områder med inventar, friareaal samt døre i flugt- og indtrængningsveje, placering af brandslukningsmateriel, stablingshøjder og oplagsform mv. Når reoler, oplagsfelter og øvrige inventar er anført på belægningsplanen, vil de øvrige areaer være at betragte som friareaal, og disse må derfor ikke anvendes til placering af oplag uden forudgående godkendelse fra kommunen.

Belægningsplanen kan med fordel kombineres med brandplanen, således at alle oplysninger med hensyn til brand fremgår af samme plan, herunder sektionsafgrænsninger, brandslukningsmateriel, brandtryk mv.

Nedenfor er der i figur 9.30. skitseret eksempler på udformning af belægningsplaner.
Figur 9.30. Eksempel på belægningsplan

Belægningsplanen kan give et hurtigt overblik over, hvor i bygningen oplag må placeres.

Planen bør ophænges synligt i den enkelte brandmæssige enhed og indgå som en naturlig del af den daglige drift, således at bygningens brugere er bekendt med den godkendte indretning af lageret.

Belægningsplaner er en del af brandstrategien, som ligger til grund for byggeriet, og som skal være godkendt af kommunalbestyrelsen i forbindelse med byggesagsbehandlingen. Foretages der ændringer af virksomhedens indretning og placerering af oplag, kan dette kræve en fornyet godkendelse fra kommunalbestyrelsen, jf. byggelovens § 2.

Håndtering af slukningsvand i bygningsafsnit i ILK 5, der er større end 600 m²

Foretages der slukning af en brand i bygningsafsnit i ILK 5 større end 600 m², kan dette ofte medføre et meget stort vandforbrug, er det nødvendigt at planlægge håndteringen heraf og herunder vurdere, hvorvidt slukningsvandet på grund af sit indhold kan udledes til kloaknettet, eller om der skal ske en anden kontrolleret bortskaffelse. Afløbssystemet i selve virksomheden såvel som det offentlige net uden for virksomheden bør fremsgå af belægningsplanerne.

Opsamling af slukningsvand skal vurderes i samarbejde med kommunens miljømyndighed.
Røgudluftning
Såfremt der installeres iltreducerende anlæg, kan der ses bort fra røgudluftning, idet risikoen for, at der opstår en brand, reduceres væsentligt, ligesom brandens omfang forventes at være lille.

For nærmere beskrivelse af udførelse af røgudluftning i industri- og lagerbygninger henvises der til 6.2.2.

Arbejdsbelysning i bygningsafsnit i ILK 5, der er større end 600 m²
Arbejdsbelysning skal medvirke til, at redningsberedskabet kan orientere sig i forbindelse med afsøgning og efterslutning og derved sikre forsvarlig indsats i industri- og lagerbygninger.

I forbindelse med fastlæggelse af tilstrækkelig belysning ved indsats og efterslutning kan der tages udgangspunkt i arbejdstilsynets regler.

9.7 Drift og vedligehold
Det fremgår af bygningsreglement 2015, kap. 5.1, stk. 2, at brandsikkerheden skal opretholdes i hele bygningens levetid. Af kap. 5.1, stk. 3, fremgår tillige, at indretning og drift af lagerbygninger skal ske på en sådan måde, at der sikres tilfredsstillende sikkerhed i tilfælde af brand.

For at opretholde brandsikkerheden i hele bygningens levetid skal den aktive og passive brandsikring løbende vedligeholdes, og flugtvejene skal altid være tilgængelige. Som en hjælp hertil kan der udarbejdes en drifts-og vedligeholdelsesplan, som har til formål at minimere risikoen for svigt af brandsikringen i hele bygningens levetid.

9.7.1 Drifts- og vedligeholdelsesplan
En drifts- og vedligeholdelsesplan kan blandt andet indeholde en beskrivelse af, hvordan de aktive og passive brandsikringstiltag vedligeholdes og kontrolleres, efter at bygningen er taget i brug. En drifts- og vedligeholdelsesplan er altså tæt knyttet til de punkter, der indgår i den brandtekniske dokumentation for bygningens udførelse, som det er angivet i afsnit 1.1 samt eventuelle ordensforskrifter.

Det er hensigtsmæssigt løbende at sikre, at de forudsætninger og tiltag, der er beskrevet i den brandtekniske dokumentation, fortsat er overholdt. Alle forhold og forudsætninger, som er medtaget ved fastlæggelsen af brandstrategien, bør derfor være fastlagt i et dokument i en sådan
form, at man regelmæssigt kan kontrollere, at forudsætningerne fortsat er opfyldt. Ændrede forudsætninger kan f.eks. være:

- Ændringer i bygningens udformning,
- indretning eller anvendelse, så som anvendelse af andre materialer i produktionen,
- ændringer af oplaget i bygningen,
- nye placeringer af reolsystemer, der kan få indflydelse på udformning af flugtveje eller slukningseffekten af sprinkleranlægget samt
- ombygninger eller renovering, der medfører ændringer i visse bygningsdele og tekniske installationer.

Terminer, kontrol og vedligeholdelse af brandtekniske installationer fremgår bl.a. af fabrikantens anvisninger samt af standarder og retningslinjer for udførelse, kontrol og vedligehold af brandtekniske installationer. Se afsnit 1.6.

Da lagerbygninger med bygningsafsnit i ILK 4 større end 2.000 m² og i ILK 5 med bygningsafsnit større end 600 m² har en særlig brandrisiko, bør der altid for disse bygninger være en drifts- og vedligeholdelsesplan. Terminer for kontrol og vedligehold for disse bygninger kan tillige fremgå af ordensreglerne.

En drifts- og vedligeholdelsesplan kan f.eks. omfatte:

- Beskrivelse af forudsætningerne for bygningens brandsikring herunder den brandtekniske dokumentation i form af brandstrategi, brandplaner, eventuelle belægningsplaner mv. samt byggetilladelse.
- Beskrivelse af oplag i bygningen, herunder begrænsninger på type af oplag, principper for oplagring eksempelvis i reoler, maksimal stabbingshøjde mv.
- Hvor der foreligger en beredskabsplan for bygningen, kan denne også i relevant omfang indgå.
- Driftsorganisation herunder den/de driftsansvarlige person(er) med kontaktoplysninger.
- Uddannelse af personale relateret til evakuering af bygningen samt forventede funktioner af brandtekniske installationer i det omfang, dette er beskrevet i brandstrategien.
- Omfang og frekvens af eventuelle brandøvelser.
- Beskrivelser af regler for brug af varmt arbejde.
- Beskrivelse af hvordan, hvor ofte og af hvem de aktive og passive brandsikringstiltag, herunder brandmateriel, vedligeholdes og kontrolles.
• Hvor flere brandsikringstiltag afhænger af hinanden, bør det kon-
trolleres, at denne sammenhæng, herunder systemintegration, er til
stede.
• Beskrivelse af friholdelse af flugtveje, indsatsveje (i og udenfor byg-
ning) og friarealer i bygningen samt beskrivelse af terminer for kon-
trol heraf.
• Kontrolskemaer for kontroller.

Dokumentation for gennemførelse af de beskrevne kontroller bør gem-
mes i en logbog eller lignende i mindst 5 år.

For lagerbygninger med bygningsafsnit i ILK 4 med brandsektioner
større end 2.000 m² og bygninger med bygningsafsnit i ILK 5 større end
600 m² bør kontroller og dokumentation tillige omfatte forhold relateret
til ordensregler, som det er beskrevet i afsnit 9.7.2. I bilag 4 er der angivet
eksempler på udførelse af kontrolskemaer.

9.7.2 Ordensregler
Ordensregler for lagerbygninger med bygningsafsnit i ILK 4 med brand-
sektioner større end 2.000 m² og bygninger med bygningsafsnit i ILK 5
større end 600 m² kan omfatte:

Generelle bestemmelser:

a) Det bør generelt sikres, at oplaget i bygningen ikke ændres i forhold
til det oplag, der er forudsat i den brandtekniske dokumentation for
bygningen og af belægningsplanerne.

b) Oplag og lagermetoder overvåges og skal være i overensstemmelse
med den for sprinkleranlægget gældende sprinklerklassifikation.

c) Parkering af motorkøretøjer, herunder trucks, bør ske som beskrevet
i den brandtekniske dokumentation for bygningen og i øvrigt som
anvist på belægningsplanen.

d) Hvor den brandtekniske dokumentation beskriver begrænsninger på
type af placering af oplag udenfor bygningen, bør det sikres, at disse
begrænsninger respekteres.

e) Personalet bør have en grundlæggende uddannelse i, hvorledes de
forholder sig i tilfælde af brand. Uddannelsen bør omfatte:
i) anvendelse af slangevinder,

ii) evakueringsinstrukser relateret til, hvorledes de forventes at forholde sig i tilfælde af, at bygningen evakueres, og

iii) et generelt kendskab til de aktive og passive brandsikringstiltag, der er i bygningen.

f) Køle- og ventilationsanlæg kontrolleres og vedligeholdes, så de er pålidelige i anlæggenes fulde levetid.

g) Bygningen bør til enhver tid holdes ren og ryddelig.

h) Udskiftning, ombygning mv. af byggevarer, bygningsdele, installationer mv. må ikke forringe bygningens sikkerhed.

Åbninger i brandmæssige adskillelser:

a) Døres, portes og lemmes selv lukkefunktion skal være funktionsdygtig. Døre, porte og lemmes bør eksempelvis lukke tætsluttende til fals, og der bør jævnligt udføres kontrol af, at disse er funktionsdygtige.

b) Selvlukkemekanismen må ikke sættes ud af funktion, og døre, porte og lemmes må ikke fastholdes i åben stilling ved hjælp af kroge, hæsper, kiler eller lignende.

c) Branddøre forsynes på begge sider med tydelige og holdbare skilte med teksten:

"BRANDDØR - holdes lukket".

d) Døre, porte og lemmes, der fastholdes i åben stilling ved hjælp af automatisk branddørlukningsanlæg, bør hver dag lukkes ved arbejdstids ophør og forsynes med tydelige og holdbare skilte med teksten:

"BRANDDØR – lukkes ved arbejdstids ophør og ved brand".

Flugt- og indtrængningsveje samt friarealer:

a) Flugt- og indtrængningsveje samt friarealer i forbindelse med pakkeafsnit, kontorafsnit, elafsnit mv. samt redningsberedskabets indsatsveje holdes frie og ryddelige i hele deres bredde.
b) Det sikres, at områder i det fri foran flugt- og indtrængningsveje, herunder tilkørselsveje og brandredningsarealer, stigrør samt trapper og lejdere til tag, til enhver tid er tilgængelige. Hvor sne og is kan forhindre brugen af disse områder, bør der foretages rydning af sne og is.

c) Alle døre i flugtveje skal i flugtretningen kunne passeres helt til terræn i det fri uden brug af nøgle eller særligt værktøj.

Brandslukningsmateriel:

a) Brandslukningsmateriel anbringes på synlige og let tilgængelige steder.

b) Vandfyldte slangevinder kontrolleres og vedligeholdes i overensstemmelse med DS/EN 671-3 Stationære brandslukningssystemer - Slangesystemer - Del 3: Vedligeholdelse af slangevinder med formfast slange og brandslangesystemer med flad slange.

Brandtekniske installationer:

a) Brandtekniske installationer, herunder sammenkoblingen af brandtekniske installationer, kontrolleres og vedligeholdes af en kvalificeret virksomhed, så de er pålidelige i hele installationernes levetid.

b) Automatiske sprinkleranlæg og automatiske brandalarmanlæg inspiceres mindst én gang om året af en inspektionsvirksomhed, der er akkrediteret i henhold til DS/EN ISO/IEC 17020 - Overensstemmelsesvurdering - Krav til forskellige typer inspektionsorganer, til inspektion af anlæg, der er udført efter den pågældende installationsstandard eller norm, for at sikre, at regler i standarden og den brandtekniske dokumentation til stadighed er tilgodeset.

c) Akkrediteringen skal forestås af Den Danske Akkrediterings- og Metrologifond (DANAK) eller et tilsvarende anerkendt akkrediteringsorgan, som har underskrevet den europæiske samarbejdsorganisation for akkrediteringsorganers (EA) multilaterale aftale om gensidig anerkendelse.

d) Iltreducerende anlæg, brandventilation eller røgudluftningsanlæggs funktion kontrolleres og afprøves efter leverandørens anbefaling, dog mindst én gang om året.
e) Sammenkoblingen af flere brandtekniske anlæg kontrolleres årligt. Tilsynet foretages af en sagkyndig person, der har den faglige indsigt i forhold til opgaven, herunder fornødent kendskab til alle anlæggenes opbygning, funktion og virkemåde.

f) Der føres driftsjournal, hvori alle væsentlige begivenheder indføres, herunder frakobling, konstaterede fejl, reparation, dato for udført egenkontrol og funktionsafprøvning.

g) Driftsjournalen opbevares på virksomheden i mindst 5 år og forevises på forlangende ved brandsyn.

Attester:

a) Der udarbejdes en attest hvert tredje år fra en autoriseret el-installatør om, at automatiske branddørlukningsanlæg (ABDL-anlæg) er funktionsdygtige.

b) Der foretages en årlig termografering af el-hovedtavler, gruppe- og maskintavler samt elektriske styrings- og reguleringsanlæg og lignende.

Ovennævnte attester samt dokumentation for termografering opbevares på virksomheden i mindst 5 år og forevises på forlangende ved brandsyn.
Bilag 1

Oversigt over brandtekniske klasser

Byggevarer og bygningsdele der opfylder de i tabel 7.1 nævnte europæiske klasser kan modsvare de i tabellen nævnte hidtidige danske klasser, men det omvendte er ikke tilfældet.

Sammenhæng mellem de europæiske klasser og de hidtidige danske klasser:

Tabel 1. Europeiske klasser og de hidtidige danske klasser.

<table>
<thead>
<tr>
<th>EUROPÆISKE KLASSER</th>
<th>HIDTIDIGE DANSKE KLASSER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materialer</td>
<td></td>
</tr>
<tr>
<td>Materiale klasse A2-s1,d0</td>
<td>Ubrændbart materiale</td>
</tr>
<tr>
<td>Materiale klasse B-s1,d0</td>
<td>Klasse A materiale</td>
</tr>
<tr>
<td>Materiale klasse D-s2,d2</td>
<td>Klasse B materiale</td>
</tr>
<tr>
<td>Beklædninger</td>
<td></td>
</tr>
<tr>
<td>Beklædning klasse K1 10 B-s1,d0</td>
<td>Klasse 1 beklædning</td>
</tr>
<tr>
<td>Beklædning klasse K1 10 D-s2,d2</td>
<td>Klasse 2 beklædning</td>
</tr>
<tr>
<td>Beklædning klasse K2 30 A2-s1,d0</td>
<td>30 minutters brandbeskyttelsessystem</td>
</tr>
<tr>
<td>Beklædning klasse K2 60 A2-s1,d0</td>
<td>60 minutters brandbeskyttelsessystem</td>
</tr>
<tr>
<td>Gulvbelægninger</td>
<td></td>
</tr>
<tr>
<td>Gulvbelægning klasse A2fl - s1</td>
<td>Ubrændbar gulvbelægning</td>
</tr>
<tr>
<td>Gulvbelægning klasse D2fl - s1</td>
<td>Klasse G gulvbelægning</td>
</tr>
<tr>
<td>Tagdækninger</td>
<td></td>
</tr>
<tr>
<td>Tagdækning klasse Broof(t2)</td>
<td>Klasse T tagdækning</td>
</tr>
<tr>
<td>Bærende, ikke-adskillende bygningsdele</td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse R 30 A2-s1,d0</td>
<td>BS-bygningsdel 30</td>
</tr>
<tr>
<td>Bygningsdel klasse R 60 A2-s1,d0</td>
<td>BS-bygningsdel 60</td>
</tr>
<tr>
<td>Bygningsdel klasse R 120 A2-s1,d0</td>
<td>BS-bygningsdel 120</td>
</tr>
<tr>
<td>Bygningsdel klasse R 30</td>
<td>BD-bygningsdel 30</td>
</tr>
<tr>
<td>Bygningsdel klasse R 60</td>
<td>BD-bygningsdel 60</td>
</tr>
</tbody>
</table>
Eksempelsamling om brandsikring af byggeri

Når der for en bygningsdel foreskrives overflade klasse D-s2,d2, så indebærer dette, at bygningsdelen skal opfylde klasse D-s2,d2 kravene i DS/EN 13501-1, når bygningsdelen (i sin helhed) brandeksponeres mod overfladen.

Ved prøvningerne for eftervisning af overflade klasse D-s2,d2 skal prøvevejledemerne derfor indeholde de dele af bygningsdelen, som kan tænkes at have indflydelse på prøvningsresultaterne.

Tilsvarende gælder, når der foreskrives overflade klasse E-d2.

Tabel 1. Europeiske klasser og de hidtidige danske klasser (fortsat).

<table>
<thead>
<tr>
<th>EUROPÆISKE KLASSER</th>
<th>HIDTIDIGE DANSKE KLASSER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bærende, adskillende bygningsdele</td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse REI 30 A2-s1,d0</td>
<td>BS-bygningsdel 30</td>
</tr>
<tr>
<td>Bygningsdel klasse REI 60 A2-s1,d0</td>
<td>BS-bygningsdel 60</td>
</tr>
<tr>
<td>Bygningsdel klasse REI 60-M A2-s1,d0</td>
<td>Tung BS-bygningsdel 60</td>
</tr>
<tr>
<td>Bygningsdel klasse REI 120 A2-s1,d0</td>
<td>BS-bygningsdel 120</td>
</tr>
<tr>
<td>Bygningsdel klasse REI 120-M A2-s1,d0</td>
<td>Tung BS-bygningsdel 120</td>
</tr>
<tr>
<td>Bygningsdel klasse REI 30</td>
<td>BD-bygningsdel 30</td>
</tr>
<tr>
<td>Bygningsdel klasse REI 60</td>
<td>BD-bygningsdel 60</td>
</tr>
<tr>
<td>Bygningsdel klasse REI 60-M A2-s1,d0</td>
<td>Tung BS-bygningsdel 60</td>
</tr>
<tr>
<td>Ikke bærende, adskillende bygningsdele</td>
<td></td>
</tr>
<tr>
<td>Bygningsdel klasse EI 30 A2-s1,d0</td>
<td>BS-bygningsdel 30</td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60 A2-s1,d0</td>
<td>BS-bygningsdel 60</td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60-M A2-s1,d0</td>
<td>Tung BS-bygningsdel 60</td>
</tr>
<tr>
<td>Bygningsdel klasse EI 120 A2-s1,d0</td>
<td>BS-bygningsdel 120</td>
</tr>
<tr>
<td>Bygningsdel klasse EI 120-M A2-s1,d0</td>
<td>Tung BS-bygningsdel 120</td>
</tr>
<tr>
<td>Bygningsdel klasse EI 30</td>
<td>BD-bygningsdel 30</td>
</tr>
<tr>
<td>Bygningsdel klasse EI 60</td>
<td>BD-bygningsdel 60</td>
</tr>
<tr>
<td>Bygningsdel klasse E 30</td>
<td>F-bygningsdel 30</td>
</tr>
<tr>
<td>Bygningsdel klasse E 60</td>
<td>F-bygningsdel 60</td>
</tr>
<tr>
<td>Døre</td>
<td></td>
</tr>
<tr>
<td>Dør klasse EI2 60-C A2-s1,d0</td>
<td>BS-dør 60</td>
</tr>
<tr>
<td>Dør klasse EI2 30-C</td>
<td>BD-dør 30</td>
</tr>
<tr>
<td>Dør klasse EI2 30</td>
<td>BD-dør 30-M</td>
</tr>
<tr>
<td>Dør klasse EI2 60-C</td>
<td>BD-dør 60</td>
</tr>
<tr>
<td>Dør klasse E 30-C</td>
<td>F-dør 30</td>
</tr>
<tr>
<td>Dør klasse E 60-C</td>
<td>F-dør 60</td>
</tr>
<tr>
<td>Dør klasse CSa</td>
<td>Selv lukkende røgtæt dør</td>
</tr>
</tbody>
</table>

Når der for en bygningsdel foreskrives overflade klasse D-s2,d2, så indebærer dette, at bygningsdelen skal opfylde klasse D-s2,d2 kravene i DS/EN 13501-1, når bygningsdelen (i sin helhed) brandeksponeres mod overfladen.
Bilag 2

Ordforklaringer

Aktiveringstemperatur
Den temperatur som aktiverer det temperaturfølsomme element i en sprinkler eller en termodetektor.

Altan/altangang
Område der har mindst en lodret afgrænsning/flade, som til enhver tid er helt åben til det fri i afgrænsningens/fladens fulde bredde over rækværket/værnet.

Anvendelseskategori
Beskriver en bygnings eller et bygningsafsnits anvendelse.

Brandbeskyttelsessystem
Er et system, som sikrer, at de brændbare materialer i den beskyttede konstruktion ikke medvirker til eller påvirkes af branden i det tidsrum, hvor konstruktionen skal bevare sin brandmodstandsevne. Brandbeskyttelsessystemet kan udføres af materialer klasse A2-s1,d0 [ubrændbare materialer].

Brandcelle
Et eller flere rum, hvorfra branden ikke spredes til andre brandceller i den tid, der kræves til evakuering og redningsmånskabets redning af personer i tilstødende brandceller.

Brandmæssig enhed
Kan f.eks. være en brandcelle eller en brandsektion.

Brandredningselevator
Elevator, som under en given tid sikkert kan anvendes af redningsberedskabet ved evakuering af f.eks. sengeliggende patienter på et hospital.

Brandrisikoforhold
Ved vurderingen af forskelle i brandrisikoforholdene i bygningen skal der tages hensyn såvel til antændelsesmuligheder som til brandbelastningen og personbelastningen. Der vil typisk være forskel i brandrisikoforhold mellem produktionsområder og lagerområder samt kontorlokaler.

Brandscenarium
Beskrivelse af en brands placering, opståen, størrelse og udvikling i en bygning.

Brandsektion
Er en bygning eller en del af en bygning, der er udformet, så en brand ikke spredes til andre brandsektioner i den tid, der kræves til evakuering og redningsmånskabets redning af personer og slukningsindsats.
Brandsikringstiltag
En konkret installation eller et konkret tiltag, der kan have til formål at begrænse eller forhindre opståen af brand, brandudviklingen/- spredningen, sikre mod skader på personer eller fremme slukningsindsatsen.

Brandplan
Tegning, hvoraf bygningens brandsikringstiltag fremgår.

Brandteknisk dimensionering ved beregning
Metode til eftervisning af en bygnings brandsikkerhedsniveau. Konsekvenserne af en brand i en bygning beregnes og sammenlignes med de opstillede acceptkriterier.

Butikker
Salgslokaler med tilhørende servicerum (lager, kontor, værksted, personalerum og lign.) og kunderum (garderobe, toiletter mv.).

Daginstitutionssabsnit
Et eller flere opholdsrum med tilhørende gange, depotrum, toiletter, køkkener og med direkte tilknytning til de pågældende daginstitutionssabsnit.

Daginstitutioner
Institutioner for alle alderstrin såsom vuggestuer, børnehaver, fritidshjem, dagcentre, skolefritidsordning og andre institutioner med lignende formål, hvor der ikke er natophold.

Evakueringstiden
Den tid, der går fra brandens start til alle personer i bygningen befinder sig på terræn i det fri eller på et sikkert sted i bygningen. Evakueringstiden er summen af varslingstid, reaktions- og beslutningstid samt gangtid.

Forsamlingslokale
Bygningsafsnit, hvor der kan forsamles mange personer, som f.eks. teatre, biografer, restauratiorner, selskabslokaler, møderum, kon certsale, udstillingsrum, idrætshall, kirker og andre bygninger og rum, der anvendes til lignende formål. Et rum, hvor der forsamles mere end 50 personer, bør ligeledes betragtes som et forsamlingssabsnit.

Forsamlingslokaleafsnit
Et eller flere forsamlingslokaler med tilhørende gange, vestibule, køkken, depotrum og andre rum med direkte tilknytning til det pågældende afsnit.

Gangtid
Er den tid, det tager personerne at forflytte sig fra deres position i bygningen til terræn i det fri eller til en sikker lokalitet.

Industribygning
En bygning med arbejdssteder, hvor der foregår produktion og/ eller bear bejdning af produkter til erhvervsmæssig brug.

Intern brandsikkerhedskontrol
Vedligeholdelse og egenkontrol af bygningens brandsikringstiltag.
Kontorafsnit
Et eller flere kontorrum med tilhørende gange, arkivrum, depot- rum og lignende med direkte tilknytning til det pågældende afsnit.

Natophold
Bygninger til natophold kan anvendes af sovende personer.

Lagerbygning
En bygning, der benyttes til opbevaring af produkter. Der kan være et pakkeafsnit i en lagerbygning.

Overfladelag

Partiel indskudt etageadskillelse
En tæt etageadskillelse, hvis størrelse ikke overstiger 75 pct. af det pågældende rummers areal.

Passager
Arealer, der er udlagt til rømning af dyr og personer i bygningen. Passager skal være let tilgængelige og bør ikke anvendes til andre formål.

Primær flugtvej
Normal adgangsvej til bygningen eller rummet/rummene ved normal driftssituation.

Reaktions- og beslutningstid
Den tid der går, fra personerne er varslede, til de påbegynder en evakuering af bygningen.

Røgzone
Et brandventileret område i en bygning omgivet af røgskærme eller lignende. Røgzonen er karakteriseret ved, at der ikke kan ske røgspredning til andre røgzoner, såfremt den tilknyttede brand- ventilation fungerer efter hensigten.

Rømningstid
Den tid det tager at flytte dyrene ud fra stalden og enten til det fri via en dør i sektionen eller til en forbindelsesgang i en anden brandmæssig enhed.

Sekundære flugtveje
Flugtveje, der ikke benyttes som normale trafikveje i bygningens normale driftssituation.

Sikker lokalitet i bygning
Kan være en anden brandsektion, hvorfra der er adgang til flugtvej til terræn i det fri.

Soverumsafsnit
I anvendelseskategori 6 forstås et eller flere soverum med tilhørende gange, vagtrum, opholdsrum, depotrum. Til et soverumsafsnit hører også soverum for personale, som ligger i forbindelse med afsnittet.

Staldbygning
Den samlede bygning, som kan være opdelt i flere staldrum.
<table>
<thead>
<tr>
<th>Begriff</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staldrum</td>
<td>Et eller flere staldrum kan være en del af en staldbygning. Staldrum er ikke nødvendigvis en selvstændig brandmæssig enhed.</td>
</tr>
<tr>
<td>Varslingstid</td>
<td>Den tid der går fra brandens start, til personerne, der opholder sig i bygningen, er blevet varslet om en brand.</td>
</tr>
<tr>
<td>Undervisningsafsnit</td>
<td>Et eller flere undervisningsrum med tilhørende gange, depotrum og andre rum med direkte tilknytning til det pågældende undervisningsafsnit.</td>
</tr>
<tr>
<td>Undervisningsrum</td>
<td>Rum, som er nødvendige for eller naturligt knytter sig til undervisningen som f.eks. biblioteksrum, spiserum, grupperum, specialklasser og gymnastiksale.</td>
</tr>
</tbody>
</table>
Bilag 3

Oversigten over udvalgte standarder og vejledninger mv.

AUTOMATISKE BRANDALARMANLÆG

DS/EN 54-1 Branddetektorer og – alarmsgivere.
Del 1: Indledning

DS/EN 54-2 Brandalarmsystemer.
Del 2: Kontrol- og indikeringsudstyr

DS/EN 54-3 Brandalarmsystemer.
Del 3: Akustiske alarmgivere

DS/EN 54-4 Brandalarmsystemer.
Del 4: Strømforsyning

DS/EN 54-5 Brandalarmsystemer.
Del 5: Termolokaldetektorer – Punktdetektorer

DS/EN 54-7 Brandalarmsystemer.
Del 7: Røgedetektorer – Punktdetektorer, der fungerer ved lysspredning, lysdæmpning eller ionisering

DS/EN 54-10 Røgedetektorer- og brandalarmeringsystemer.
Del 10: Flammemekaniske – Punktdetektorer

DS/EN 54-11 Brandalarmsystemer.
Del 11: Manuelle brandtryk

DS/EN 54-12 Brandalarmer.
Del 12: Røgalarmer – Optiske detektorer

prEN 54-13 Brandalarmsystemer
Del 13: Kompatibilitetsvurdering af systemkomponenter

DS/EN 54-17 Forslag brandalarmsystemer
Del 17: Kortslutningsisolatorer

DS/EN 54-18 Forslag brandalarmsystemer
Del 18: Indgangs- og udgangskomponenter

Forskrift 232 Automatiske brandalarmanlæg udgivet af Dansk Brand- og sikringsteknisk Institut
RØGALARMANLÆG

DS/EN 14604 Røgalarmer
NT ELEC 004 Smoke Alarms: Performance
DVN 4540 Røgdetektorer
DVN 4541 Optiske røgdetektorer

AUTOMATISKE SPRINKLERANLÆG, BOLIGSPRINKLERANLÆG, DELUGE OG VANDTÅGE ANLÆG M.V.

EN 12845 Stationære brandslukningssystemer. Automatiske sprinkleranlæg. Beregning, installation og vedligeholdelse
NFPA 13 Installation of Sprinkler Systems
NFPA 13D Standard for installation of Sprinkler Systems in One- and Two-family Dwellings and manufactured Homes
NFPA 13R Installation of Sprinkler Systems in Residential Occupancies up to and Including Four Stories in Height
DS 431 Dansk Ingeniørforenings norm for automatiske sprinkleranlæg i bygninger
DS/EN 12259-1 Brandslukningssystemer. Komponenter til sprinkler- og vandspraysystemer
Del 1: Sprinklere
DS/EN 12259-2 Brandslukningssystemer. Komponenter til sprinkler- og vandspredningssystemer
Del 2: Våd alarmventil
DS/EN 12259-3 Brandslukningssystemer. Komponenter til sprinkler- og vandspraysystemer
Del 3: Tør alarmventil
DS/EN 12259-4 Stationære brandbekæmpelsessystemer. Komponenter til sprinkler- og vandspraysystemer
Del 4: Vandtryksdrevne alarmklokker
DS/EN 12259-5 Stationære brandbekæmpelsessystemer. Komponenter til sprinkler- og vandspraysystemer
Del 5: Vandgennemstrømningsmålere
prEN 12259-8 Fire protection. Components for automatic sprinkler systems. Part 8: Pressure switches
prEN 12259-9 Brandslukningssystemer. Komponenter til sprinkler- og vandspredningssystemer
Del 9: Deluge ventil
prEN 12259-10 Brandslukningssystemer. Komponenter til sprinkler- og vandspredningssystemer
Del 10: Multikontroller
AUTOMATISKE SPRINKLERANLÆG, BOLIGSPRINKLERANLÆG, DELUGE OG VANDTÅGE ANLÆG M.V.

prEN 12259-11 Brandslukningssystemer. Komponenter til sprinkler- og vandspredningssystemer
Del 11: Medium eller højhastighedsforstøvere

prEN 12259-12 Brandslukningssystemer. Komponenter til sprinkler- og vandspredningssystemer
Del 12: Sprinklerpumper

prEN 14816 Stationære brandslukningssystemer. Vandsprojtesystemer.
Dimensionering og installation

Forskrift 251 Automatiske sprinkleranlæg udgivet af Dansk Brandsikringsteknisk Institut

VARSlingsanlæg

DS/EN 54-1 Branddetektorer og -alarmsystemer
Del 1: Indledning

DS/EN 54-2 Brandalarmsystemer
Del 2: Kontrol- og indikeringsudstyr

DS/EN 54-3 Brandalarmsystemer
Del 3: Akustiske alarmgivere

DS/EN 54-4 Brandalarmsystemer
Del 4: Strømforsyning

DS/EN 54-5 Brandalarmsystemer
Del 5: Termodektorer – Punktdetektorer

DS/EN 54-7 Brandalarmsystemer
Del 7: Røgdetektorer – Punktdetektorer, der fungerer ved lysdæmpning eller ionisering

DS/EN 54-10 Branddetekterings- og brandalarmeringssystemer.
Del 10: Flammedetektorer – Punktdetektorer

DS/EN 54-11 Brandalarmsystemer
Del 11: Manuelle brandtryk

DS/EN 60849 Lydudstyr til nødsituationsformål

Stærkstrømsbekendtgørelsen, afsnit 6, Elektriske installationer

Brandteknisk retningslinie 24
Varslingsanlæg – Projekttering og installation udgivet af Dansk Brand- og sikringsteknisk Institut
BRANDVENTILATIONSANLÆG

DS/EN 12101-1 Brandventilation
Del 1: Specifikation for røgbarrierer

DS/EN 12101-2 Brandventilation
Del 2: Specifikation for naturlige røg- og varmeudugsningsventilatorer

DS/EN 12101-3 Brandventilation
Del 3: Specifikation for ventilatorer til mekanisk brandventilation

prEN 12101-4 Brandventilation
Del 4: Brandventilationsinstallationer. Komponenter

DS/CEN/TR 12101-5 Brandventilation
Del 5: Retningslinjer vedr. funktionelle henstillinger og beregningsmetoder for brandventilationssystemer

prEN 12101-6 Brandventilation
Del 6: Trykdifferentialsystemer. Komponenter

prEN 12101-7 Brandventilation
Del 7: Røgkanaler

prEN 12101-8 Brandventilation
Del 8: Røgspjæld

prEN 12101-9 Brandventilation
Del 9: Kontrolpaneler

prEN 12101-10 Brandventilation
Del 10: Energiforsyning

Brandteknisk Vejledning 27
Brandventilation udgivet af Dansk Brand- og sikringsteknisk Institut

KOMFORTVENTILATION

DS 428 Norm for brandtekniske foranstaltninger ved ventilationsanlæg

FLUGTVEJS- OG PANIKBELYSNING

DS/EN 1838. Belysning. Nødbelysning

DS 734.1 Sikkerhed på arbejdspladsen
Del 1: Sikkerhedsskilte. Principper, skildedimensioner og læseafstande

DS 734.2 Sikkerhed på arbejdspladsen
Del 2: Sikkerhedsskilte. Forbuds-, advarsels-, påbuds-, rednings- og brandværnsskilte

Arbejdstilsynets bekendtgørelse. Bekendtgørelse om sikkerhedsskiltning og anden form for signalgivning

Stærkstrømsbekendtgørelsen, afsnit 6, Elektriske installationer
FLUGTVEJS- OG PANIKBELYSNING

<table>
<thead>
<tr>
<th>Standard</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS/EN 60598 Belysningsarmaturer</td>
<td>Del 1: Almindelige bestemmelser og prøvninger</td>
</tr>
<tr>
<td>DS/EN 60598-2 Belysningsarmaturer</td>
<td>Del 2: Særlige bestemmelser</td>
</tr>
<tr>
<td>DS/EN 61347-2 Forkoblingsudstyr for lamper</td>
<td>Del 2: Særlige bestemmelser</td>
</tr>
<tr>
<td>Brandteknisk Vejledning 34</td>
<td>Sikkerhedsbelysning udgivet af Dansk Brand- og sikringsteknisk Institut</td>
</tr>
</tbody>
</table>

SLANGEVINDER

<table>
<thead>
<tr>
<th>Standard</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS/EN 671-1 Stationære brandslukningsystemer – Slangesystemer</td>
<td>Del 1: Slangevinder med formfaste slanger</td>
</tr>
<tr>
<td>DS/EN 671-2 Stationære brandslukningsystemer – Slangesystemer</td>
<td>Del 2: Brandslangesystemer med flad slange</td>
</tr>
<tr>
<td>DS/EN 671-3 Fast brandslukningsudstyr – Slangeskabe</td>
<td>Del 3: Vedligeholdelseseftersyn af slangevinder med formfaste slanger og slangeskabe med ikke-formfaste slanger</td>
</tr>
<tr>
<td>Brandteknisk vejledning nr. 15 Vandfyldte slangevinder udgivet af Dansk Brand- og sikringsteknisk Institut</td>
<td></td>
</tr>
</tbody>
</table>

ELEVATORER

<table>
<thead>
<tr>
<th>Standard</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS/EN 81-1 Sikkerhedsforskifter for udførelse og installation af elevatorer</td>
<td>Del 1: Elektrisk drevne elevatorer</td>
</tr>
<tr>
<td>DS/EN 81-2 Sikkerhedsforskifter for udførelse og installation af elevatorer</td>
<td>Del 2: Hydrauliske elevatorer</td>
</tr>
<tr>
<td>DS/EN 81-3 Sikkerhedsforskifter for udførelse og installation af elevatorer</td>
<td>Del 3: Elektrisk og hydraulisk drevne serviceeleveror</td>
</tr>
<tr>
<td>ASME A17.1 Safety Code for Elevators and Escalators Section 211 Emergency Operation and Signalling Devices</td>
<td></td>
</tr>
<tr>
<td>DS/EN 81-72 Sikkerhedsregler for konstruktion og installation af elevatorer – særlige anvendelser for person- og godselevatorer</td>
<td>Del 72: Brandmandselevatorer</td>
</tr>
</tbody>
</table>

STIGRØR

<table>
<thead>
<tr>
<th>Standard</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS 752 A-, B- og C-fastkoblinger med metallisk pakflade. Brandværn</td>
<td></td>
</tr>
<tr>
<td>DS 757 A-, B- og C-slutdæksler med gummipakning. Brandværn</td>
<td></td>
</tr>
</tbody>
</table>
AUTOMATISKE BRANDDØRLUKNINGSANLÆG

Forskrift 231 Automatiske branddørlukningsanlæg udgivet af Dansk Brand- og sikringsteknisk Institut

DS/EN 1154 Bygningsbeslag – Dørlukkere med kontrolleret lukning

DS/EN 1155 Bygningsbeslag – Elektrisk styrede fasthold til døre

DS/EN 14637 Bygningsbeslag – Elektrisk styrede hold-åben-systemer til brand/røgdørbeslag – Krav, prøvningsmetoder, installation og vedligeholdelse

BESLAG TIL DØRE I FLUGTVEJE

DS/EN 179 Bygningsbeslag – Nødudgangsbeslag betjent ved løftehåndtag eller trykplade – Krav og prøvningsmetoder

DS/EN 1125 Bygningsbeslag – Panikudgangsbeslag betjent ved vandret stang – Krav og prøvningsmetoder

SKILTE OG MARKERINGER

DS 734.1 Sikkerhed på arbejdspladsen
Del 1: Sikkerhedsskilte. Principper, skilte dimensioner og læseafstande

DS 734.2 Sikkerhed på arbejdspladsen
Del 2: Sikkerhedsskilte. Forbuds-, advarsels-, påbuds-, rednings- og brandværnsskilte

Arbejdstilsynets bekendtgørelse
Bekendtgørelse om sikkerhedsskiltning og anden form for signalgivning

ANDET

DS 5129-2-1: Installationer til signalering og kommunikation
Del 2-1: Føringsveje i bygninger til kabler til brug for IT&T-formål.
Nedenstående skemaer anviser eksempler på, hvorledes kontrolskemaer for egenkontrol kan udformes. Skemaerne er ikke udtømmende. Der tages udgangspunkt i lagerbygninger med bygningsafsnit i ILK 5, men skemaerne kan også anvendes for andre industri- og lagerklasser, i det omfang, de er relevante. Skemaerne er tænkt til at fungere sammen med en logbog, hvori de gennemførte kontroller gemmes.

Den daglige kontrol er tænkt som et dagligt tjek af, at forholdene er tilgodeset. Det noteres kun i logbogen, hvis der er konstateret fejl.

Periodevise og årlige kontroller arkiveres i logbogen.

Perioedevise kontrol er en kontrol, der foretages ugentligt, månedvis eller kvartalsvist. Årlige kontroller sker med et interval på maksimalt 12 måneder.

Hvor der ikke er fundet fejl, anses det som tilstrækkeligt, hvis tre på hinanden følgende kontroller pr. emne arkiveres. Årlige egenkontroller og kontroller, der angiver fejl og udbedringer, arkiveres i fem år.

Det bemærkes, at både aktiv og passiv brandsikring ligeledes løbende skal jf. bygningsreglementet 2015 kap. 5.4, stk. 2, kontrolleres og vedligeholdes. Der henvises til relevante standarder samt producenternes anvisninger herfor.
DAGLIG KONTROL

<table>
<thead>
<tr>
<th>FEJL</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
</table>

Rydelighed

- Er der rent og rydeligt i lageret

Flugtveje, indtrængningsveje og friarealer i og udenfor bygningen

- Er flugtveje og indtrængningsveje friholdt for oplag
- Holdes friarealer frie for oplag

Brandmateriel

- Er brandmateriel placeret synligt, tydeligt markeret og tilgængeligt

Stablingshøjde

- Er stablingshøjden overholdt

PERIOIDEVIS KONTROL

<table>
<thead>
<tr>
<th>OK</th>
<th>FEJL</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
</table>

Flugtvejs- og indtrængningsveje

- Kan udgangsdøre nemt åbnes uden brug af nøgle eller andet særligt værktøj i flugtretningen?
- Lukker selvlukkende branddøre tæt
- Lukker selvlukkende porte tæt

Brandmateriel

- Er plomberingen i håndslukningsudstyr intakt

Kontrol med oplag og indretning

- Er oplagets type og udformning i overensstemmelse med det godkendte oplag
- Er lagertypen i overensstemmelse med den godkendt
- Er øvrige forhold relateret til belægningsplanen som beskrevet
ÅRLIG KONTROL

<table>
<thead>
<tr>
<th>KATEGORI</th>
<th>OK</th>
<th>FEJL</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brandmateriel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrol og vedligehold af slangevinder jf. DS/EN 671-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandtekniske installationer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eftersyn og service af automatisk dørlukningsanlæg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afprøvning og kontrol af røgudluftningSANLÆG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afprøvning og kontrol af brandventilationsanlæg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afprøvning og kontrol af iltreducerende anlæg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afprøvning og kontrol af stigrør</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akkrediteret inspektion af sprinkleranlæg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akkrediteret inspektion af automatisk brandalarmanlæg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afprøvning og kontrol af sammenkoblede anlæg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Øvrige forhold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gennemførelse af eventuelle brandøvelser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adgang for redningsberedskabet, kontrol af nøgler i nøglebokse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informationstavler og sikkerhedsskiltte for redningsberedskabet er fortsat synlige og tydelige</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>